IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Immunization and Hedging of Post Retirement Income Annuity Products

Listed author(s):
  • Changyu Liu


    (CEPAR and School of Risk and Actuarial Studies, UNSW Business School, University of New South Wales, 2052 Sydney, Australia)

  • Michael Sherris


    (CEPAR and School of Risk and Actuarial Studies, UNSW Business School, University of New South Wales, 2052 Sydney, Australia)

Registered author(s):

    Designing post retirement benefits requires access to appropriate investment instruments to manage the interest rate and longevity risks. Post retirement benefits are increasingly taken as a form of income benefit, either as a pension or an annuity. Pension funds and life insurers offer annuities generating long term liabilities linked to longevity. Risk management of life annuity portfolios for interest rate risks is well developed but the incorporation of longevity risk has received limited attention. We develop an immunization approach and a delta-gamma based hedging approach to manage the risks of adverse portfolio surplus using stochastic models for mortality and interest rates. We compare and assess the immunization and hedge effectiveness of fixed-income coupon bonds, annuity bonds, as well as longevity bonds, using simulations of the portfolio surplus for an annuity portfolio and a range of risk measures including value-at-risk. We show how fixed-income annuity bonds can more effectively match cash flows and provide additional hedge effectiveness over coupon bonds. Longevity bonds, including deferred longevity bonds, reduce risk significantly compared to coupon and annuity bonds, reflecting the long duration of the typical life annuity and the exposure to longevity risk. Longevity bonds are shown to be effective in immunizing surplus over short and long horizons. Delta gamma hedging is generally only effective over short horizons. The results of the paper have implications for how providers of post retirement income benefit streams can manage risks in demanding conditions where innovation in investment markets can support new products and increase the product range.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    Article provided by MDPI, Open Access Journal in its journal Risks.

    Volume (Year): 5 (2017)
    Issue (Month): 1 (March)
    Pages: 1-29

    in new window

    Handle: RePEc:gam:jrisks:v:5:y:2017:i:1:p:19-:d:93259
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    2. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    3. Tsai, Cary Chi-Liang & Chung, San-Lin, 2013. "Actuarial applications of the linear hazard transform in mortality immunization," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 48-63.
    4. Fisher, Lawrence & Weil, Roman L, 1971. "Coping with the Risk of Interest-Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies," The Journal of Business, University of Chicago Press, vol. 44(4), pages 408-431, October.
    5. Menoncin, Francesco, 2008. "The role of longevity bonds in optimal portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 343-358, February.
    6. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    7. Luciano, Elisa & Regis, Luca & Vigna, Elena, 2012. "Delta–Gamma hedging of mortality and interest rate risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 402-412.
    8. Lin, Tzuling & Tsai, Cary Chi-Liang, 2013. "On the mortality/longevity risk hedging with mortality immunization," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 580-596.
    9. Rogers, L. C. G. & Stummer, Wolfgang, 2000. "Consistent fitting of one-factor models to interest rate data," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 45-63, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:5:y:2017:i:1:p:19-:d:93259. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.