IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i4p69-d1625778.html
   My bibliography  Save this article

Interest Rate Sensitivity of Callable Bonds and Higher-Order Approximations

Author

Listed:
  • Scott S. Dow

    (M. R. Greenberg School of Risk Science, J. Mack Robinson College of Business, Georgia State University, Atlanta, GA 30302, USA)

  • Stefanos C. Orfanos

    (M. R. Greenberg School of Risk Science, J. Mack Robinson College of Business, Georgia State University, Atlanta, GA 30302, USA)

Abstract

Certain fixed-income securities, such as callable bonds and mortgage-backed securities subject to prepayment, typically exhibit negative convexity at low yields and cannot be adequately immunized through duration and convexity-matching alone. To address this residual risk, we examine the concepts of bond tilt and bond agility. We provide explicit calculations and derive several approximation formulas that incorporate higher-order terms. With the help of these methods, we are able to track the price-yield dynamics of callable bonds remarkably well, achieving mean absolute errors below 2.5% across a wide variety of callable bonds for parallel yield shifts of up to ±200 basis points.

Suggested Citation

  • Scott S. Dow & Stefanos C. Orfanos, 2025. "Interest Rate Sensitivity of Callable Bonds and Higher-Order Approximations," Risks, MDPI, vol. 13(4), pages 1-24, April.
  • Handle: RePEc:gam:jrisks:v:13:y:2025:i:4:p:69-:d:1625778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/13/4/69/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/13/4/69/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    2. Leonard Tchuindjo, 2008. "An accurate formula for bond‐portfolio stress testing," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 9(3), pages 262-277, May.
    3. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Leonard Tchuindjo, 2008. "An accurate formula for bond-portfolio stress testing," Journal of Risk Finance, Emerald Group Publishing, vol. 9(3), pages 262-277, May.
    6. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    7. Fisher, Lawrence & Weil, Roman L, 1971. "Coping with the Risk of Interest-Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies," The Journal of Business, University of Chicago Press, vol. 44(4), pages 408-431, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    3. Leonard Tchuindjo, 2007. "Pricing of Multi-Defaultable Bonds with a Two-Correlated-Factor Hull-White Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 19-39.
    4. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, April.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    7. Theodore M. Barnhill & Panagiotis Papapanagiotou & Liliana Schumacher, 2002. "Measuring Integrated Market and Credit Risk in Bank Portfolios: An Application to a Set of Hypothetical Banks Operating in South Africa," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 11(5), pages 401-443, December.
    8. Barone-Adesi, Giovanni & Bermudez, Ana & Hatgioannides, John, 2003. "Two-factor convertible bonds valuation using the method of characteristics/finite elements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1801-1831, August.
    9. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    10. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    11. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    12. Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
    13. repec:uts:finphd:40 is not listed on IDEAS
    14. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    15. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    16. Constantin Mellios, 2007. "Interest rate options valuation under incomplete information," Annals of Operations Research, Springer, vol. 151(1), pages 99-117, April.
    17. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    18. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    19. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    20. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    21. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:4:p:69-:d:1625778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.