IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i3p50-d1356275.html
   My bibliography  Save this article

Value-at-Risk Effectiveness: A High-Frequency Data Approach with Semi-Heavy Tails

Author

Listed:
  • Mario Ivan Contreras-Valdez

    (Campus Ciudad de México, Tecnológico de Monterrey, Mexico City 14380, Mexico)

  • Sonal Sahu

    (Campus Guadalajara, Tecnológico de Monterrey, Colonia Nuevo México, Zapopan 45201, Mexico)

  • José Antonio Núñez-Mora

    (EGADE Business School, Tecnológico de Monterrey, Mexico City 01389, Mexico)

  • Roberto Joaquín Santillán-Salgado

    (EGADE Business School, Tecnológico de Monterrey, Mexico City 01389, Mexico)

Abstract

In the broader landscape of cryptocurrency risk management, this study delves into the nuanced estimation of Value-at-Risk (VaR) for a uniformly weighted portfolio of cryptocurrencies, employing the bivariate Normal Inverse Gaussian distribution renowned for its semi-heavy tails. Utilizing high-frequency data spanning between 1 January 2017 and 25 October 2022, with a primary focus on Bitcoin and Ethereum, our research seeks to accentuate the resilience of VaR methodology as a paramount risk assessment tool. The essence of our investigation lies in advancing the comprehension of VaR accuracy by quantitatively comparing the observed returns of both cryptocurrencies with their corresponding estimated values, with a central theme being the endorsement of the Normal Inverse Gaussian distribution as a potent model for risk measurement, particularly in the domain of high-frequency data. To bolster the statistical reliability of our results, we adopt a forward test methodology, showcasing not only a contribution to the evolution of risk assessment techniques in Finance but also underscoring the practicality of sophisticated distributional models in econometrics. Our findings not only contribute to the refinement of risk assessment methods but also highlight the applicability of such models in precisely modeling and forecasting financial risk within the dynamic realm of cryptocurrencies, epitomized by the case study of Bitcoin and Ethereum.

Suggested Citation

  • Mario Ivan Contreras-Valdez & Sonal Sahu & José Antonio Núñez-Mora & Roberto Joaquín Santillán-Salgado, 2024. "Value-at-Risk Effectiveness: A High-Frequency Data Approach with Semi-Heavy Tails," Risks, MDPI, vol. 12(3), pages 1-23, March.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:3:p:50-:d:1356275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/3/50/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/3/50/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huiyu Huang & Tae-Hwy Lee, 2013. "Forecasting Value-at-Risk Using High-Frequency Information," Econometrics, MDPI, vol. 1(1), pages 1-14, June.
    2. Huang, Jiefei & Xu, Yang & Song, Yuping, 2022. "A high-frequency approach to VaR measures and forecasts based on the HAR-QREG model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    4. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    5. Fernanda Maria Müller & Marcelo Brutti Righi, 2018. "Numerical comparison of multivariate models to forecasting risk measures," Risk Management, Palgrave Macmillan, vol. 20(1), pages 29-50, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Resources Policy, Elsevier, vol. 57(C), pages 224-235.
    3. Hampl, Filip & Vágnerová Linnertová, Dagmar & Horváth, Matúš, 2024. "Crypto havens during war times? Evidence from the Russian invasion of Ukraine," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    4. Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    5. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    6. Khaki, Audil & Prasad, Mason & Al-Mohamad, Somar & Bakry, Walid & Vo, Xuan Vinh, 2023. "Re-evaluating portfolio diversification and design using cryptocurrencies: Are decentralized cryptocurrencies enough?," Research in International Business and Finance, Elsevier, vol. 64(C).
    7. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    8. Kosc, Krzysztof & Sakowski, Paweł & Ślepaczuk, Robert, 2019. "Momentum and contrarian effects on the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 691-701.
    9. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    10. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    11. Blau, Benjamin M. & Griffith, Todd G. & Whitby, Ryan J., 2021. "Inflation and Bitcoin: A descriptive time-series analysis," Economics Letters, Elsevier, vol. 203(C).
    12. Beneki, Christina & Koulis, Alexandros & Kyriazis, Nikolaos A. & Papadamou, Stephanos, 2019. "Investigating volatility transmission and hedging properties between Bitcoin and Ethereum," Research in International Business and Finance, Elsevier, vol. 48(C), pages 219-227.
    13. Adebola, Solarin Sakiru & Gil-Alana, Luis A. & Madigu, Godfrey, 2019. "Gold prices and the cryptocurrencies: Evidence of convergence and cointegration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1227-1236.
    14. Chan, Wing Hong & Le, Minh & Wu, Yan Wendy, 2019. "Holding Bitcoin longer: The dynamic hedging abilities of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 107-113.
    15. Elise Alfieri & Radu Burlacu & Geoffroy Enjolras, 2019. "On the nature and financial performance of bitcoin," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 20(2), pages 114-137, March.
    16. Khalid Khan & Jiluo Sun & Sinem Derindere Koseoglu & Ashfaq U. Rehman, 2021. "Revisiting Bitcoin Price Behavior Under Global Economic Uncertainty," SAGE Open, , vol. 11(3), pages 21582440211, August.
    17. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    18. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    19. Toan Luu Duc Huynh & Muhammad Shahbaz & Muhammad Ali Nasir & Subhan Ullah, 2024. "Correction to: Financial modelling, risk management of energy instruments and the role of cryptocurrencies," Annals of Operations Research, Springer, vol. 332(1), pages 1273-1273, January.
    20. de la Horra, Luis P. & de la Fuente, Gabriel & Perote, Javier, 2019. "The drivers of Bitcoin demand: A short and long-run analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 21-34.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:3:p:50-:d:1356275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.