IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i7p133-d849518.html
   My bibliography  Save this article

The Copula Derived from the SAHARA Utility Function

Author

Listed:
  • Jaap Spreeuw

    (Faculty of Actuarial Science and Insurance, Bayes Business School (Formerly Cass), University of London, 106 Bunhill Row, London EC1Y 8TZ, UK)

Abstract

A new Archimedean copula family is presented that was derived from the SAHARA utility function introduced in the economic literature in 2011. Its properties are discussed, and its flexibility and versatility are demonstrated. It is left tail decreasing or right tail increasing, but unlike mainstream Archimedean families, not necessarily stochastically increasing at the same time. It is shown that the family fits very well to a dataset of previously studied coupled lives in the literature.

Suggested Citation

  • Jaap Spreeuw, 2022. "The Copula Derived from the SAHARA Utility Function," Risks, MDPI, vol. 10(7), pages 1-10, June.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:7:p:133-:d:849518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/7/133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/7/133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Frederik Michiels & Ann De Schepper, 2012. "How to improve the fit of Archimedean copulas by means of transforms," Statistical Papers, Springer, vol. 53(2), pages 345-355, May.
    3. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    4. Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
    5. Bernard, Carole & De Gennaro Aquino, Luca & Levante, Lucia, 2021. "Optimal annuity demand for general expected utility agents," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 70-79.
    6. Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008. "Modelling stochastic mortality for dependent lives," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
    7. Sarabia, José María & Gómez-Déniz, Emilio & Prieto, Faustino & Jordá, Vanesa, 2018. "Aggregation Of Dependent Risks In Mixtures Of Exponential Distributions And Extensions," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1079-1107, September.
    8. Chen, An & Pelsser, Antoon & Vellekoop, Michel, 2011. "Modeling non-monotone risk aversion using SAHARA utility functions," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2075-2092, September.
    9. Wenyuan Li & Jingtang Ma, 2018. "Optimal investment strategies for general utilities under dynamic elasticity of variance models," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1379-1388, August.
    10. Spreeuw, Jaap, 2014. "Archimedean copulas derived from utility functions," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 235-242.
    11. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.
    2. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    3. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    4. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    5. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    6. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
    7. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    8. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    9. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    10. Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.
    11. Franc{c}ois Dufresne & Enkelejd Hashorva & Gildas Ratovomirija & Youssouf Toukourou, 2016. "On bivariate lifetime modelling in life insurance applications," Papers 1601.04351, arXiv.org.
    12. Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
    13. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    14. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    15. Arendarczyk, Marek & Kozubowski, Tomasz. J. & Panorska, Anna K., 2018. "The joint distribution of the sum and maximum of dependent Pareto risks," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 136-156.
    16. Vadim Semenikhine & Edward Furman & Jianxi Su, 2018. "On a Multiplicative Multivariate Gamma Distribution with Applications in Insurance," Risks, MDPI, vol. 6(3), pages 1-20, August.
    17. Marri, Fouad & Moutanabbir, Khouzeima, 2022. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 75-90.
    18. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    19. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    20. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:7:p:133-:d:849518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.