IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i24p3326-d707063.html
   My bibliography  Save this article

CL-Net: ConvLSTM-Based Hybrid Architecture for Batteries’ State of Health and Power Consumption Forecasting

Author

Listed:
  • Noman Khan

    (Sejong University, Seoul 143-747, Korea)

  • Ijaz Ul Haq

    (Sejong University, Seoul 143-747, Korea)

  • Fath U Min Ullah

    (Sejong University, Seoul 143-747, Korea)

  • Samee Ullah Khan

    (Sejong University, Seoul 143-747, Korea)

  • Mi Young Lee

    (Sejong University, Seoul 143-747, Korea)

Abstract

Traditional power generating technologies rely on fossil fuels, which contribute to worldwide environmental issues such as global warming and climate change. As a result, renewable energy sources (RESs) are used for power generation where battery energy storage systems (BESSs) are widely used to store electrical energy for backup, match power consumption and generation during peak hours, and promote energy efficiency in a pollution-free environment. Accurate battery state of health (SOH) prediction is critical because it plays a key role in ensuring battery safety, lowering maintenance costs, and reducing BESS inconsistencies. The precise power consumption forecasting is critical for preventing power shortage and oversupply, and the complicated physicochemical features of batteries dilapidation cannot be directly acquired. Therefore, in this paper, a novel hybrid architecture called ‘CL-Net’ based on convolutional long short-term memory (ConvLSTM) and long short-term memory (LSTM) is proposed for multi-step SOH and power consumption forecasting. First, battery SOH and power consumption-related raw data are collected and passed through a preprocessing step for data cleansing. Second, the processed data are fed into ConvLSTM layers, which extract spatiotemporal features and form their encoded maps. Third, LSTM layers are used to decode the encoded features and pass them to fully connected layers for final multi-step forecasting. Finally, a comprehensive ablation study is conducted on several combinations of sequential learning models using three different time series datasets, i.e., national aeronautics and space administration (NASA) battery, individual household electric power consumption (IHEPC), and domestic energy management system (DEMS). The proposed CL-Net architecture reduces root mean squared error (RMSE) up to 0.13 and 0.0052 on the NASA battery and IHEPC datasets, respectively, compared to the state-of-the-arts. These experimental results show that the proposed architecture can provide robust and accurate SOH and power consumption forecasting compared to the state-of-the-art.

Suggested Citation

  • Noman Khan & Ijaz Ul Haq & Fath U Min Ullah & Samee Ullah Khan & Mi Young Lee, 2021. "CL-Net: ConvLSTM-Based Hybrid Architecture for Batteries’ State of Health and Power Consumption Forecasting," Mathematics, MDPI, vol. 9(24), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3326-:d:707063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/24/3326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/24/3326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yuanyuan & Sheng, Hanmin & Cheng, Yuhua & Stroe, Daniel-Ioan & Teodorescu, Remus, 2020. "State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis," Applied Energy, Elsevier, vol. 277(C).
    2. Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    3. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Virtsionis Gkalinikis & Christoforos Nalmpantis & Dimitris Vrakas, 2022. "Torch-NILM: An Effective Deep Learning Toolkit for Non-Intrusive Load Monitoring in Pytorch," Energies, MDPI, vol. 15(7), pages 1-20, April.
    2. Jiapeng Yan & Huifang Kong & Zhihong Man, 2022. "Recurrent Neural Network-Based Nonlinear Optimization for Braking Control of Electric Vehicles," Energies, MDPI, vol. 15(24), pages 1-17, December.
    3. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yihuan & Li, Kang & Liu, Xuan & Wang, Yanxia & Zhang, Li, 2021. "Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning," Applied Energy, Elsevier, vol. 285(C).
    2. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo, 2023. "Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    3. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    4. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    6. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    7. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    8. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    9. Shuo Sun & Junzhong Sun & Zongliang Wang & Zhiyong Zhou & Wei Cai, 2022. "Prediction of Battery SOH by CNN-BiLSTM Network Fused with Attention Mechanism," Energies, MDPI, vol. 15(12), pages 1-17, June.
    10. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    11. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    12. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    13. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    15. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    16. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    17. Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
    19. Zuo, Hongyan & Liang, Jingwei & Zhang, Bin & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2023. "Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction," Energy, Elsevier, vol. 282(C).
    20. Kaizhi Liang & Zhaosheng Zhang & Peng Liu & Zhenpo Wang & Shangfeng Jiang, 2019. "Data-Driven Ohmic Resistance Estimation of Battery Packs for Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3326-:d:707063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.