IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i10p1092-d553248.html
   My bibliography  Save this article

Queuing-Inventory Models with MAP Demands and Random Replenishment Opportunities

Author

Listed:
  • Srinivas R. Chakravarthy

    (Departments of Industrial and Manufacturing Engineering & Mathematics, Kettering University, Flint, MI 48504, USA)

  • B. Madhu Rao

    (Department of Business Systems and Analytics, School of Business Administration, Stetson University, Deland, FL 32723, USA)

Abstract

Combining the study of queuing with inventory is very common and such systems are referred to as queuing-inventory systems in the literature. These systems occur naturally in practice and have been studied extensively in the literature. The inventory systems considered in the literature generally include ( s , S ) -type. However, in this paper we look at opportunistic-type inventory replenishment in which there is an independent point process that is used to model events that are called opportunistic for replenishing inventory. When an opportunity (to replenish) occurs, a probabilistic rule that depends on the inventory level is used to determine whether to avail it or not. Assuming that the customers arrive according to a Markovian arrival process, the demands for inventory occur in batches of varying size, the demands require random service times that are modeled using a continuous-time phase-type distribution, and the point process for the opportunistic replenishment is a Poisson process, we apply matrix-analytic methods to study two of such models. In one of the models, the customers are lost when at arrivals there is no inventory and in the other model, the customers can enter into the system even if the inventory is zero but the server has to be busy at that moment. However, the customers are lost at arrivals when the server is idle with zero inventory or at service completion epochs that leave the inventory to be zero. Illustrative numerical examples are presented, and some possible future work is highlighted.

Suggested Citation

  • Srinivas R. Chakravarthy & B. Madhu Rao, 2021. "Queuing-Inventory Models with MAP Demands and Random Replenishment Opportunities," Mathematics, MDPI, vol. 9(10), pages 1-26, May.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:10:p:1092-:d:553248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/10/1092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/10/1092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arnoud den Boer & Ohad Perry & Bert Zwart, 2018. "Dynamic pricing policies for an inventory model with random windows of opportunities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 660-675, December.
    2. Mahdi Tajbakhsh, M. & Lee, Chi-Guhn & Zolfaghari, Saeed, 2011. "An inventory model with random discount offerings," Omega, Elsevier, vol. 39(6), pages 710-718, December.
    3. Karimi-Nasab, M. & Konstantaras, I., 2013. "An inventory control model with stochastic review interval and special sale offer," European Journal of Operational Research, Elsevier, vol. 227(1), pages 81-87.
    4. Y. Feng & J. Sun, 2001. "Computing the Optimal Replenishment Policy for Inventory Systems with Random Discount Opportunities," Operations Research, INFORMS, vol. 49(5), pages 790-795, October.
    5. Ben A. Chaouch, 2007. "Inventory control and periodic price discounting campaigns," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 94-108, February.
    6. Gurnani, Haresh, 1996. "Optimal ordering policies in inventory systems with random demand and random deal offerings," European Journal of Operational Research, Elsevier, vol. 95(2), pages 299-312, December.
    7. Kamran Moinzadeh, 1997. "Replenishment and Stocking Policies for Inventory Systems with Random Deal Offerings," Management Science, INFORMS, vol. 43(3), pages 334-342, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agassi Melikov & Ramil Mirzayev & Janos Sztrik, 2023. "Double-Sources Queuing-Inventory Systems with Finite Waiting Room and Destructible Stocks," Mathematics, MDPI, vol. 11(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinçe, Çerağ, 2021. "Forward Buying and Strategic Stockouts," European Journal of Operational Research, Elsevier, vol. 289(1), pages 118-131.
    2. Berling, Peter, 2008. "The capital cost of holding inventory with stochastically mean-reverting purchase price," European Journal of Operational Research, Elsevier, vol. 186(2), pages 620-636, April.
    3. Xiuli Chao & Frank Y. Chen, 2005. "An Optimal Production and Shutdown Strategy when a Supplier Offers an Incentive Program," Manufacturing & Service Operations Management, INFORMS, vol. 7(2), pages 130-143, March.
    4. Peter Berling & Victor Martínez-de-Albéniz, 2011. "Optimal Inventory Policies when Purchase Price and Demand Are Stochastic," Operations Research, INFORMS, vol. 59(1), pages 109-124, February.
    5. Mahdi Tajbakhsh, M. & Lee, Chi-Guhn & Zolfaghari, Saeed, 2011. "An inventory model with random discount offerings," Omega, Elsevier, vol. 39(6), pages 710-718, December.
    6. Larsen, Kim S. & Wøhlk, Sanne, 2010. "Competitive analysis of the online inventory problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 685-696, December.
    7. Arnoud den Boer & Ohad Perry & Bert Zwart, 2018. "Dynamic pricing policies for an inventory model with random windows of opportunities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(8), pages 660-675, December.
    8. Yan, Xiaoming & Zhang, Minghui & Liu, Ke, 2010. "A note on coordination in decentralized assembly systems with uncertain component yields," European Journal of Operational Research, Elsevier, vol. 205(2), pages 469-478, September.
    9. Tamjidzad, Shahrzad & Mirmohammadi, S. Hamid, 2015. "An optimal (r, Q) policy in a stochastic inventory system with all-units quantity discount and limited sharable resource," European Journal of Operational Research, Elsevier, vol. 247(1), pages 93-100.
    10. Hall, George & Rust, John, 2021. "Estimation of endogenously sampled time series: The case of commodity price speculation in the steel market," Journal of Econometrics, Elsevier, vol. 222(1), pages 219-243.
    11. Moritz Fleischmann & Jo A. E. E. van Nunen & Ben Gräve, 2003. "Integrating Closed-Loop Supply Chains and Spare-Parts Management at IBM," Interfaces, INFORMS, vol. 33(6), pages 44-56, December.
    12. Jinfa Chen & David D. Yao & Shaohui Zheng, 2001. "Optimal Replenishment and Rework with Multiple Unreliable Supply Sources," Operations Research, INFORMS, vol. 49(3), pages 430-443, June.
    13. Burak Kazaz, 2004. "Production Planning Under Yield and Demand Uncertainty with Yield-Dependent Cost and Price," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 209-224, October.
    14. Ben A. Chaouch, 2007. "Inventory control and periodic price discounting campaigns," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 94-108, February.
    15. George Hall and John Rust, Yale University, 2001. "Econometric Methods for Endogenously Sampled Time Series: The Case of Commodity Price Speculation in the Steel Market," Computing in Economics and Finance 2001 274, Society for Computational Economics.
    16. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.
    17. X. Guo & P. Kaminsky & P. Tomecek & M. Yuen, 2011. "Optimal spot market inventory strategies in the presence of cost and price risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(1), pages 109-137, February.
    18. Wang, Yunzeng, 2001. "The optimality of myopic stocking policies for systems with decreasing purchasing prices," European Journal of Operational Research, Elsevier, vol. 133(1), pages 153-159, August.
    19. Li, Linda & Miller, David & Schmidt, Charles P., 2016. "Optimizing inventory׳s contribution to profitability in a regulated utility: The Averch–Johnson effect," International Journal of Production Economics, Elsevier, vol. 175(C), pages 132-141.
    20. Sarah Yini Gao & David Simchi-Levi & Chung-Piaw Teo & Zhenzhen Yan, 2019. "Disruption Risk Mitigation in Supply Chains: The Risk Exposure Index Revisited," Operations Research, INFORMS, vol. 67(3), pages 831-852, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:10:p:1092-:d:553248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.