IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1420-d403271.html
   My bibliography  Save this article

Supplier Selection by Fuzzy Assessment and Testing for Process Quality under Consideration with Data Imprecision

Author

Listed:
  • Kuen-Suan Chen

    (Department of Industrial Engineering and Management, National Chin-Yi University of Technology, Taichung 41170, Taiwan
    Department of Business Administration, Chaoyang University of Technology, Taichung 41349, Taiwan)

  • Tsang-Chuan Chang

    (College of Intelligence, National Taichung University of Science and Technology, Taichung 40401, Taiwan)

  • Chien-Che Huang

    (Department of Leisure and Recreation Management, National Taichung University of Science and Technology, Taichung 40401, Taiwan)

Abstract

Supply chain management models integrate upstream and downstream organizations to enable rapid response to consumer needs. For the manufacturing industry, the process quality of suppliers is thus the foundation of sustainable growth for firms and an important indicator of whether a firm can effectively reduce waste and protect the environment. To this end, this paper proposes a model of supplier selection for manufacturers based on process quality assessment. First of all, Six Sigma quality index Q p k is adopted as the assessment tool to conveniently measure the quality level of process. Practical applications require estimates of Q p k from the data collected to analyze the process quality of each supplier. The fact that uncertainty is unavoidable in the collected data means that using the crisp estimate of Q p k can lead to misjudgment of the process quality. To enhance the reliability of evaluation and reduce the risk of misjudgment, the fuzzy number Q ^ ˜ p k is proposed to perform the fuzzy testing of two indices Q p k provided by suppliers with the intent of making reliable decisions on supplier selection.

Suggested Citation

  • Kuen-Suan Chen & Tsang-Chuan Chang & Chien-Che Huang, 2020. "Supplier Selection by Fuzzy Assessment and Testing for Process Quality under Consideration with Data Imprecision," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1420-:d:403271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. Chen & L. Ouyang & C. Hsu & C. Wu, 2009. "The communion bridge to Six Sigma and process capability indices," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(3), pages 463-469, May.
    2. Wu, Chien-Wei & Pearn, W.L. & Kotz, Samuel, 2009. "An overview of theory and practice on process capability indices for quality assurance," International Journal of Production Economics, Elsevier, vol. 117(2), pages 338-359, February.
    3. Chen, K.S. & Chen, T.W., 2008. "Multi-process capability plot and fuzzy inference evaluation," International Journal of Production Economics, Elsevier, vol. 111(1), pages 70-79, January.
    4. Kuen-Suan Chen & Hsi-Tien Chen & Tsang-Chuan Chang, 2017. "The construction and application of Six Sigma quality indices," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2365-2384, April.
    5. Tsang-Chuan Chang & Kuen-Suan Chen, 2019. "Testing process quality of wire bonding with multiple gold wires from viewpoint of producers," International Journal of Production Research, Taylor & Francis Journals, vol. 57(17), pages 5400-5413, September.
    6. Hengameh Hadian & S. Chahardoli & Amir-Mohammad Golmohammadi & Ali Mostafaeipour, 2020. "A practical framework for supplier selection decisions with an application to the automotive sector," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2997-3014, May.
    7. Kun-Tzu Yu & Kuen-Suan Chen, 2016. "Testing and analysing capability performance for products with multiple characteristics," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6633-6643, November.
    8. Kuen-Suan Chen & Kung-Jeng Wang & Tsang-Chuan Chang, 2017. "A novel approach to deriving the lower confidence limit of indices , , and in assessing process capability," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 4963-4981, September.
    9. Vidhika Tiwari & N. K. Singh, 2017. "Process capability index for bivariate exponentially distributed quality characteristics and its sampling properties," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(22), pages 11099-11109, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi Keshavarz-Ghorabaee, 2023. "Sustainable Supplier Selection and Order Allocation Using an Integrated ROG-Based Type-2 Fuzzy Decision-Making Approach," Mathematics, MDPI, vol. 11(9), pages 1-33, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ching-Hsin & Chen, Kuen-Suan, 2020. "New process yield index of asymmetric tolerances for bootstrap method and six sigma approach," International Journal of Production Economics, Elsevier, vol. 219(C), pages 216-223.
    2. Chun-Min Yu & Win-Jet Luo & Ting-Hsin Hsu & Kuei-Kuei Lai, 2020. "Two-Tailed Fuzzy Hypothesis Testing for Unilateral Specification Process Quality Index," Mathematics, MDPI, vol. 8(12), pages 1-18, November.
    3. Chen, Kuen-Suan & Wang, Ching-Hsin & Tan, Kim-Hua, 2019. "Developing a fuzzy green supplier selection model using six sigma quality indices," International Journal of Production Economics, Elsevier, vol. 212(C), pages 1-7.
    4. Chen, Kuen-Suan & Wang, Ching-Hsin & Tan, Kim Hua & Chiu, Shun-Fung, 2019. "Developing one-sided specification six-sigma fuzzy quality index and testing model to measure the process performance of fuzzy information," International Journal of Production Economics, Elsevier, vol. 208(C), pages 560-565.
    5. Kuen-Suan Chen & Ming-Chieh Huang & Chun-Min Yu & Hsuan-Yu Chen, 2022. "Quality-Based Supplier Selection Model for Products with Multiple Quality Characteristics," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    6. Peruchi, Rogério Santana & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & Ferreira, João Roberto & de Santana Carmelossi, Michele, 2013. "A new multivariate gage R&R method for correlated characteristics," International Journal of Production Economics, Elsevier, vol. 144(1), pages 301-315.
    7. Wei Lo & Chun-Ming Yang & Kuei-Kuei Lai & Shao-Yu Li & Chi-Han Chen, 2021. "Developing a Novel Fuzzy Evaluation Model by One-Sided Specification Capability Indices," Mathematics, MDPI, vol. 9(10), pages 1-11, May.
    8. Kuen-Suan Chen, 2022. "Fuzzy testing of operating performance index based on confidence intervals," Annals of Operations Research, Springer, vol. 311(1), pages 19-33, April.
    9. Chun-Chieh Tseng & Kuo-Ching Chiou & Kuen-Suan Chen, 2022. "Estimation of the Six Sigma Quality Index," Mathematics, MDPI, vol. 10(19), pages 1-13, September.
    10. Kuen-Suan Chen & Kung-Jeng Wang & Tsang-Chuan Chang, 2017. "A novel approach to deriving the lower confidence limit of indices , , and in assessing process capability," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 4963-4981, September.
    11. Kuen-Suan Chen & Hsi-Tien Chen & Tsang-Chuan Chang, 2017. "The construction and application of Six Sigma quality indices," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2365-2384, April.
    12. Wu, Chien-Wei, 2012. "An efficient inspection scheme for variables based on Taguchi capability index," European Journal of Operational Research, Elsevier, vol. 223(1), pages 116-122.
    13. Chien-Wei Wu & Zih-Huei Wang, 2017. "Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2351-2364, April.
    14. Amin Mahmoudi & Saad Ahmed Javed, 2022. "Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach," Group Decision and Negotiation, Springer, vol. 31(5), pages 1051-1096, October.
    15. Chien-Wei Wu & Ming-Hung Shu & Pei-An Wang & Bi-Min Hsu, 2021. "Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives," Computational Statistics, Springer, vol. 36(2), pages 1391-1413, June.
    16. Wu, Chien-Wei & Aslam, Muhammad & Jun, Chi-Hyuck, 2012. "Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk," European Journal of Operational Research, Elsevier, vol. 217(3), pages 560-566.
    17. Kuen-Suan Chen & Tsun-Hung Huang, 2021. "A Fuzzy Evaluation Model Aimed at Smaller-the-Better-Type Quality Characteristics," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
    18. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    19. Michele Scagliarini, 2011. "Multivariate process capability using principal component analysis in the presence of measurement errors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 113-128, June.
    20. Tai-Shan Lee & Ching-Hsin Wang & Chun-Min Yu, 2019. "Fuzzy Evaluation Model for Enhancing E-Learning Systems," Mathematics, MDPI, vol. 7(10), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1420-:d:403271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.