IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2014-d1131475.html
   My bibliography  Save this article

Sustainable Supplier Selection and Order Allocation Using an Integrated ROG-Based Type-2 Fuzzy Decision-Making Approach

Author

Listed:
  • Mehdi Keshavarz-Ghorabaee

    (Department of Management, Faculty of Humanities (Azadshahr Branch), Gonbad Kavous University, Gonbad Kavous 49717-99151, Iran)

Abstract

The sustainable Supplier Evaluation and Selection and Order Allocation (SSOA) problem has received significant attention in supply chain management due to its potential to enhance a company’s performance, improve customer satisfaction, and reduce costs. In this study, an integrated methodology is proposed to address the SSOA problem. The methodology combines multiple techniques to handle the uncertainties associated with supplier evaluation, including a new ranking method based on the concept of Radius of Gyration (ROG) for interval type-2 fuzzy sets. The methodology also incorporates both subjective weights obtained using the Simple Multi-Attribute Rating Technique (SMART) and expert preferences, and objective weights calculated using the Method based on the Removal Effects of Criteria (MEREC) method to determine the weights of evaluation criteria. Some criteria for sustainable development are used to evaluate supplier performance, resulting in type-2 fuzzy sets, which are evaluated using the Weighted Aggregated Sum Product Assessment (WASPAS) method. The ROG-based ranking method is employed to calculate the relative scores of suppliers. Finally, a multi-objective decision-making (MODM) mathematical model is presented to identify suitable suppliers and allocate their order quantities. The methodology is demonstrated in a sustainable SSOA problem and is shown to be efficient and effective, as the ROG-based ranking method allows for more accurate supplier performance evaluation, and the use of the criteria highlights the importance of sustainability in supplier selection and order allocation. The methodology’s practicality is further supported by the analysis conducted in this study, which demonstrates the methodology’s ability to handle the uncertainties associated with supplier evaluation and selection. The proposed methodology offers a comprehensive approach to the SSOA problem that can effectively handle the uncertainties in supplier evaluation and selection and promote sustainable practices in supply chain management.

Suggested Citation

  • Mehdi Keshavarz-Ghorabaee, 2023. "Sustainable Supplier Selection and Order Allocation Using an Integrated ROG-Based Type-2 Fuzzy Decision-Making Approach," Mathematics, MDPI, vol. 11(9), pages 1-33, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2014-:d:1131475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fatih Ecer, 2022. "Multi-criteria decision making for green supplier selection using interval type-2 fuzzy AHP: a case study of a home appliance manufacturer," Operational Research, Springer, vol. 22(1), pages 199-233, March.
    2. Samuel Yousefi & Mustafa Jahangoshai Rezaee & Maghsud Solimanpur, 2021. "Supplier selection and order allocation using two-stage hybrid supply chain model and game-based order price," Operational Research, Springer, vol. 21(1), pages 553-588, March.
    3. Sonia Irshad Mari & Muhammad Saad Memon & Muhammad Babar Ramzan & Sheheryar Mohsin Qureshi & Muhammad Waqas Iqbal, 2019. "Interactive Fuzzy Multi Criteria Decision Making Approach for Supplier Selection and Order Allocation in a Resilient Supply Chain," Mathematics, MDPI, vol. 7(2), pages 1-16, February.
    4. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
    5. Ghadimi, Pezhman & Ghassemi Toosi, Farshad & Heavey, Cathal, 2018. "A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain," European Journal of Operational Research, Elsevier, vol. 269(1), pages 286-301.
    6. Shahrbanoo Rezaei & Iman Ghalehkhondabi & Majid Rafiee & Soudabeh Namdar Zanganeh, 2020. "Supplier selection and order allocation in CLSC configuration with various supply strategies under disruption risk," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 908-934, September.
    7. Sourour Aouadni & Jalel Euchi, 2022. "Using Integrated MMD-TOPSIS to Solve the Supplier Selection and Fair Order Allocation Problem: A Tunisian Case Study," Logistics, MDPI, vol. 6(1), pages 1-18, January.
    8. Celik, Erkan & Bilisik, Ozge Nalan & Erdogan, Melike & Gumus, Alev Taskin & Baracli, Hayri, 2013. "An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 28-51.
    9. Ahmed Mohammed & Irina Harris & Anthony Soroka & Mohamed Naim & Tim Ramjaun & Morteza Yazdani, 2021. "Gresilient supplier assessment and order allocation planning," Annals of Operations Research, Springer, vol. 296(1), pages 335-362, January.
    10. Aida Rezaei & Amir Aghsami & Masoud Rabbani, 2021. "Supplier selection and order allocation model with disruption and environmental risks in centralized supply chain," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1036-1072, December.
    11. Kaur, Harpreet & Prakash Singh, Surya, 2021. "Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies," International Journal of Production Economics, Elsevier, vol. 231(C).
    12. Kuen-Suan Chen & Tsang-Chuan Chang & Chien-Che Huang, 2020. "Supplier Selection by Fuzzy Assessment and Testing for Process Quality under Consideration with Data Imprecision," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    13. Islam, Samiul & Amin, Saman Hassanzadeh & Wardley, Leslie J., 2021. "Machine learning and optimization models for supplier selection and order allocation planning," International Journal of Production Economics, Elsevier, vol. 242(C).
    14. Konrad Zimmer & Magnus Fröhling & Frank Schultmann, 2016. "Sustainable supplier management -- a review of models supporting sustainable supplier selection, monitoring and development," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1412-1442, March.
    15. Imane Tronnebati & Manal El Yadari & Fouad Jawab, 2022. "A Review of Green Supplier Evaluation and Selection Issues Using MCDM, MP and AI Models," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    16. Hosseini, Seyedmohsen & Morshedlou, Nazanin & Ivanov, Dmitry & Sarder, M.D. & Barker, Kash & Khaled, Abdullah Al, 2019. "Resilient supplier selection and optimal order allocation under disruption risks," International Journal of Production Economics, Elsevier, vol. 213(C), pages 124-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Ahmed & Lopes de Sousa Jabbour, Ana Beatriz & Koh, Lenny & Hubbard, Nicolas & Chiappetta Jabbour, Charbel Jose & Al Ahmed, Teejan, 2022. "The sourcing decision-making process in the era of digitalization: A new quantitative methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    2. Aida Rezaei & Amir Aghsami & Masoud Rabbani, 2021. "Supplier selection and order allocation model with disruption and environmental risks in centralized supply chain," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1036-1072, December.
    3. Islam, Samiul & Amin, Saman Hassanzadeh & Wardley, Leslie J., 2021. "Machine learning and optimization models for supplier selection and order allocation planning," International Journal of Production Economics, Elsevier, vol. 242(C).
    4. Ahmed Mohammed & Morteza Yazdani & Amar Oukil & Ernesto D. R. Santibanez Gonzalez, 2021. "A Hybrid MCDM Approach towards Resilient Sourcing," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    5. Selçuk Perçin, 2022. "Circular supplier selection using interval-valued intuitionistic fuzzy sets," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5551-5581, April.
    6. Maciej Urbaniak & Piotr Rogala & Piotr Kafel, 2023. "Expectations of manufacturing companies regarding future priorities of improvement actions taken by their suppliers," Operations Management Research, Springer, vol. 16(1), pages 296-310, March.
    7. Amin Mahmoudi & Saad Ahmed Javed, 2022. "Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach," Group Decision and Negotiation, Springer, vol. 31(5), pages 1051-1096, October.
    8. Aleksandar Aleksić & Danijela Tadić, 2023. "Industrial and Management Applications of Type-2 Multi-Attribute Decision-Making Techniques Extended with Type-2 Fuzzy Sets from 2013 to 2022," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    9. Shin Hee Baek & Jong Soo Kim, 2020. "Efficient Algorithms for a Large-Scale Supplier Selection and Order Allocation Problem Considering Carbon Emissions and Quantity Discounts," Mathematics, MDPI, vol. 8(10), pages 1-17, September.
    10. Alireza Arshadi Khamseh, 2021. "A Time-Dependent Sustainable–Flexible Supplier Selection Considering Uncertainty and TODIM Method in Iranian Dairy Industries," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 113-126, June.
    11. Amirkeyvan Ghazvinian & Bo Feng & Junwen Feng & Hossein Talebzadeh & Maria Dzikuć, 2024. "Lean, Agile, Resilient, Green, and Sustainable (LARGS) Supplier Selection Using Multi-Criteria Structural Equation Modeling under Fuzzy Environments," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
    12. Yu-Lan Wang & Chin-Nung Liao, 2023. "Assessment of Sustainable Reverse Logistic Provider Using the Fuzzy TOPSIS and MSGP Framework in Food Industry," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    13. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    14. Wu, Yang & Wang, Ziyang & Yao, Jianming & Guo, Haixiang, 2023. "Joint decision of order allocation and lending in the multi-supplier scenario purchase order financing," International Journal of Production Economics, Elsevier, vol. 255(C).
    15. María-José Verdecho & Faustino Alarcón-Valero & David Pérez-Perales & Juan-José Alfaro-Saiz & Raúl Rodríguez-Rodríguez, 2021. "A methodology to select suppliers to increase sustainability within supply chains," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1231-1251, December.
    16. Saheeb Ahmed Kayani & Salman Sagheer Warsi & Raja Awais Liaqait, 2023. "A Smart Decision Support Framework for Sustainable and Resilient Supplier Selection and Order Allocation in the Pharmaceutical Industry," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    17. Mishra, Arunodaya Raj & Mardani, Abbas & Rani, Pratibha & Kamyab, Hesam & Alrasheedi, Melfi, 2021. "A new intuitionistic fuzzy combinative distance-based assessment framework to assess low-carbon sustainable suppliers in the maritime sector," Energy, Elsevier, vol. 237(C).
    18. Amin Mahmoudi & Xiaopeng Deng & Saad Ahmed Javed & Na Zhang, 2021. "Sustainable Supplier Selection in Megaprojects: Grey Ordinal Priority Approach," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 318-339, January.
    19. Federico Toffano & Michele Garraffa & Yiqing Lin & Steven Prestwich & Helmut Simonis & Nic Wilson, 2022. "A multi-objective supplier selection framework based on user-preferences," Annals of Operations Research, Springer, vol. 308(1), pages 609-640, January.
    20. Alptekin Ulutaş & Ayşe Topal & Dragan Pamučar & Željko Stević & Darjan Karabašević & Gabrijela Popović, 2022. "A New Integrated Multi-Criteria Decision-Making Model for Sustainable Supplier Selection Based on a Novel Grey WISP and Grey BWM Methods," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2014-:d:1131475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.