IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1776-d427811.html
   My bibliography  Save this article

A Generator of Bivariate Distributions: Properties, Estimation, and Applications

Author

Listed:
  • Manuel Franco

    (Department of Statistics and Operations Research, University of Murcia, CEIR Campus Mare Nostrum, IMIB-Arrixaca, 30100 Murcia, Spain)

  • Juana-María Vivo

    (Department of Statistics and Operations Research, University of Murcia, CEIR Campus Mare Nostrum, IMIB-Arrixaca, 30100 Murcia, Spain)

  • Debasis Kundu

    (Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur 208016, India)

Abstract

In 2020, El-Morshedy et al. introduced a bivariate extension of the Burr type X generator (BBX-G) of distributions, and Muhammed presented a bivariate generalized inverted Kumaraswamy (BGIK) distribution. In this paper, we propose a more flexible generator of bivariate distributions based on the maximization process from an arbitrary three-dimensional baseline distribution vector, which is of interest for maintenance and stress models, and expands the BBX-G and BGIK distributions, among others. This proposed generator allows one to generate new bivariate distributions by combining non-identically distributed baseline components. The bivariate distributions belonging to the proposed family have a singular part due to the latent component which makes them suitable for modeling two-dimensional data sets with ties. Several distributional and stochastic properties are studied for such bivariate models, as well as for its marginals, conditional distributions, and order statistics. Furthermore, we analyze its copula representation and some related association measures. The EM algorithm is proposed to compute the maximum likelihood estimations of the unknown parameters, which is illustrated by using two particular distributions of this bivariate family for modeling two real data sets.

Suggested Citation

  • Manuel Franco & Juana-María Vivo & Debasis Kundu, 2020. "A Generator of Bivariate Distributions: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(10), pages 1-30, October.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1776-:d:427811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Crescenzo, Antonio Di, 2000. "Some results on the proportional reversed hazards model," Statistics & Probability Letters, Elsevier, vol. 50(4), pages 313-321, December.
    2. Franco, Manuel & Vivo, Juana-Maria & Kundu, Debasis, 2020. "A generalized Freund bivariate model for a two-component load sharing system," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    4. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    5. Franco, Manuel & Vivo, Juana-María, 2010. "A multivariate extension of Sarhan and Balakrishnan's bivariate distribution and its ageing and dependence properties," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 491-499, March.
    6. Sarhan, Ammar M. & Apaloo, Joseph, 2013. "Exponentiated modified Weibull extension distribution," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 137-144.
    7. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    8. Kundu, Debasis & Gupta, Rameshwar D., 2009. "Bivariate generalized exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 581-593, April.
    9. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    10. Sarhan, Ammar M. & Hamilton, David C. & Smith, Bruce & Kundu, Debasis, 2011. "The bivariate generalized linear failure rate distribution and its multivariate extension," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 644-654, January.
    11. Ramesh Gupta & N. Balakrishnan, 2012. "Log-concavity and monotonicity of hazard and reversed hazard functions of univariate and multivariate skew-normal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 181-191, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    2. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    3. M. El-Morshedy & Ziyad Ali Alhussain & Doaa Atta & Ehab M. Almetwally & M. S. Eliwa, 2020. "Bivariate Burr X Generator of Distributions: Properties and Estimation Methods with Applications to Complete and Type-II Censored Samples," Mathematics, MDPI, vol. 8(2), pages 1-31, February.
    4. Muhammed, Hiba Z., 2020. "On a bivariate generalized inverted Kumaraswamy distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    5. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.
    6. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    7. M. S. Eliwa & Ziyad Ali Alhussain & M. El-Morshedy, 2020. "Discrete Gompertz-G Family of Distributions for Over- and Under-Dispersed Data with Properties, Estimation, and Applications," Mathematics, MDPI, vol. 8(3), pages 1-26, March.
    8. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 19-29.
    9. Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Muhammad Mohsin & Hannes Kazianka & Jürgen Pilz & Albrecht Gebhardt, 2014. "A new bivariate exponential distribution for modeling moderately negative dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 123-148, March.
    11. M. S. Eliwa & M. El-Morshedy, 2019. "Bivariate Gumbel-G Family of Distributions: Statistical Properties, Bayesian and Non-Bayesian Estimation with Application," Annals of Data Science, Springer, vol. 6(1), pages 39-60, March.
    12. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    13. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    14. Ramadan A. ZeinEldin & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2019. "Statistical Properties and Different Methods of Estimation for Type I Half Logistic Inverted Kumaraswamy Distribution," Mathematics, MDPI, vol. 7(10), pages 1-24, October.
    15. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    16. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    17. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    18. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    19. Lillo Rodríguez, Rosa Elvira & Laniado Rodas, Henry, 2013. "Allocation policies of redundancies in two-parallel-series and two-series-parallel systems," DES - Working Papers. Statistics and Econometrics. WS ws132622, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Søren Asmussen & Jaakko Lehtomaa, 2017. "Distinguishing Log-Concavity from Heavy Tails," Risks, MDPI, vol. 5(1), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1776-:d:427811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.