IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1664-d420277.html
   My bibliography  Save this article

Adaptive Clustering through Multi-Agent Technology: Development and Perspectives

Author

Listed:
  • Sergey Grachev

    (Institute of Automation and Information Technologies, Samara State Technical University, 443100 Samara, Russia)

  • Petr Skobelev

    (Institute of Automation and Information Technologies, Samara State Technical University, 443100 Samara, Russia)

  • Igor Mayorov

    (Institute of Automation and Information Technologies, Samara State Technical University, 443100 Samara, Russia)

  • Elena Simonova

    (Department of Information Systems and Technologies, Samara National Research University, 443086 Samara, Russia)

Abstract

The paper is devoted to an overview of multi-agent principles, methods, and technologies intended to adaptive real-time data clustering. The proposed methods provide new principles of self-organization of records and clusters, represented by software agents, making it possible to increase the adaptability of different clustering processes significantly. The paper also presents a comparative review of the methods and results recently developed in this area and their industrial applications. An ability of self-organization of items and clusters suggests a new perspective to form groups in a bottom-up online fashion together with continuous adaption previously obtained decisions. Multi-agent technology allows implementing this methodology in a parallel and asynchronous multi-thread manner, providing highly flexible, scalable, and reliable solutions. Industrial applications of the intended for solving too complex engineering problems are discussed together with several practical examples of data clustering in manufacturing applications, such as the pre-analysis of customer datasets in the sales process, pattern discovery, and ongoing forecasting and consolidation of orders and resources in logistics, clustering semantic networks in insurance document processing. Future research is outlined in the areas such as capturing the semantics of problem domains and guided self-organization on the virtual market.

Suggested Citation

  • Sergey Grachev & Petr Skobelev & Igor Mayorov & Elena Simonova, 2020. "Adaptive Clustering through Multi-Agent Technology: Development and Perspectives," Mathematics, MDPI, vol. 8(10), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1664-:d:420277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Z. Volkovich & D. Toledano-Kitai & G.-W. Weber, 2013. "Self-learning K-means clustering: a global optimization approach," Journal of Global Optimization, Springer, vol. 56(2), pages 219-232, June.
    3. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    4. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Chen & Ashutosh Sharma & Jyoti Bhola & Tien V. T. Nguyen & Chinh V. Truong, 2022. "Multi-agent task planning and resource apportionment in a smart grid," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 444-455, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    2. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    3. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    4. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    5. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    6. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    7. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    8. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    9. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    10. Bernd (B.) Heidergott & Jia-Ping Huang & Ines (I.) Lindner, 2018. "Naive Learning in Social Networks with Random Communication," Tinbergen Institute Discussion Papers 18-018/II, Tinbergen Institute.
    11. Johannes M. Bauer & Michael Latzer, 2016. "The economics of the Internet: an overview," Chapters, in: Johannes M. Bauer & Michael Latzer (ed.), Handbook on the Economics of the Internet, chapter 1, pages 3-20, Edward Elgar Publishing.
    12. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    13. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    14. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    15. Bauer, Johannes M., 2014. "Platforms, systems competition, and innovation: Reassessing the foundations of communications policy," Telecommunications Policy, Elsevier, vol. 38(8), pages 662-673.
    16. Julia Neidhardt & Nataliia Rümmele & Hannes Werthner, 0. "Predicting happiness: user interactions and sentiment analysis in an online travel forum," Information Technology & Tourism, Springer, vol. 0, pages 1-19.
    17. OKUBO Toshihiro & ONO Yukako & SAITO Yukiko, 2014. "Roles of Wholesalers in Transaction Networks," Discussion papers 14059, Research Institute of Economy, Trade and Industry (RIETI).
    18. Glover, Dominic & Kim, Sung Kyu & Stone, Glenn Davis, 2020. "Golden Rice and technology adoption theory: A study of seed choice dynamics among rice growers in the Philippines," Technology in Society, Elsevier, vol. 60(C).
    19. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    20. Mark Braverman & Jing Chen & Sampath Kannan, 2016. "Optimal Provision-After-Wait in Healthcare," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 352-376, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1664-:d:420277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.