IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i9p164-d168948.html
   My bibliography  Save this article

Introducing Weights Restrictions in Data Envelopment Analysis Models for Mutual Funds

Author

Listed:
  • Antonella Basso

    (Department of Economics, Ca’ Foscari University of Venice, Cannaregio 873, 30121 Venice, Italy
    These authors contributed equally to this work.)

  • Stefania Funari

    (Department of Management, Ca’ Foscari University of Venice, Cannaregio 873, 30121 Venice, Italy
    These authors contributed equally to this work.)

Abstract

Data envelopment analysis has been applied in a number of papers to measure the performance of mutual funds, besides a great many applications on the more diverse fields of performance evaluation. The data envelopment analysis models proposed in the mutual funds literature do not generally set restrictions on the weights assigned to the input and output variables. In this paper, we study the effects of the introduction of different weight restrictions on the results of the performance evaluation of mutual funds. In addition, we provide a unified matrix representation for three widely used approaches on weight restrictions: virtual weight restrictions with constraints on all decision-making units (DMUs) (on all funds); virtual weight restrictions with constraints only on the target unit; assurance regions. Using the unified matrix representation of the weights constraints, we formulate the data envelopment analysis (DEA ) efficiency model and express the efficient frontier in a unified way for the different weight restrictions considered. We investigate the effects of the different weight restrictions on the performance evaluation by means of an empirical application on a set of European mutual funds. Moreover, we study the behaviour of the fund performance scores as the restrictions on the weights become increasingly strict.

Suggested Citation

  • Antonella Basso & Stefania Funari, 2018. "Introducing Weights Restrictions in Data Envelopment Analysis Models for Mutual Funds," Mathematics, MDPI, vol. 6(9), pages 1-24, September.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:9:p:164-:d:168948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/9/164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/9/164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    2. Lidia Angulo-Meza & Marcos Lins, 2002. "Review of Methods for Increasing Discrimination in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 116(1), pages 225-242, October.
    3. Basso, Antonella & Funari, Stefania, 2014. "Constant and variable returns to scale DEA models for socially responsible investment funds," European Journal of Operational Research, Elsevier, vol. 235(3), pages 775-783.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    5. Russell G. Thompson & F. D. Singleton & Robert M. Thrall & Barton A. Smith, 1986. "Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas," Interfaces, INFORMS, vol. 16(6), pages 35-49, December.
    6. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    7. Podinovski, Victor V. & Bouzdine-Chameeva, Tatiana, 2017. "Solving DEA models in a single optimization stage: Can the non-Archimedean infinitesimal be replaced by a small finite epsilon?," European Journal of Operational Research, Elsevier, vol. 257(2), pages 412-419.
    8. Sarrico, C. S. & Dyson, R. G., 2004. "Restricting virtual weights in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 159(1), pages 17-34, November.
    9. Antonella Basso & Stefania Funari, 2016. "DEA Performance Assessment of Mutual Funds," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 229-287, Springer.
    10. Joseph C. Paradi & H. David Sherman & Fai Keung Tam, 2018. "Data Envelopment Analysis in the Financial Services Industry," International Series in Operations Research and Management Science, Springer, number 978-3-319-69725-3, September.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1979. "Measuring the efficiency of decision-making units," European Journal of Operational Research, Elsevier, vol. 3(4), pages 339-338, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catarina Alexandra Neves Proença & Maria Elisabete Duarte Neves & Maria Castelo Baptista Gouveia & Mara Teresa Silva Madaleno, 2023. "Technological, healthcare and consumer funds efficiency: influence of COVID-19," Operational Research, Springer, vol. 23(2), pages 1-42, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalinichenko, Olena & Amado, Carla A.F. & Santos, Sérgio P., 2022. "Exploring the potential of Data Envelopment Analysis for enhancing pay-for-performance programme design in primary health care," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1084-1100.
    2. Ebrahimi, Bohlool & Dhamotharan, Lalitha & Ghasemi, Mohammad Reza & Charles, Vincent, 2022. "A cross-inefficiency approach based on the deviation variables framework," Omega, Elsevier, vol. 111(C).
    3. Panagiotis Ravanos & Giannis Karagiannis, 2022. "On VEA, Production Trade-offs and Weight Restrictions," Discussion Paper Series 2022_04, Department of Economics, University of Macedonia, revised Jun 2022.
    4. Toloo, Mehdi & Ebrahimi, Bohlool & Amin, Gholam R., 2021. "New data envelopment analysis models for classifying flexible measures: The role of non-Archimedean epsilon," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1037-1050.
    5. Basso, Antonella & Casarin, Francesco & Funari, Stefania, 2018. "How well is the museum performing? A joint use of DEA and BSC to measure the performance of museums," Omega, Elsevier, vol. 81(C), pages 67-84.
    6. Pereira, Miguel Alves & Camanho, Ana Santos & Figueira, José Rui & Marques, Rui Cunha, 2021. "Incorporating preference information in a range directional composite indicator: The case of Portuguese public hospitals," European Journal of Operational Research, Elsevier, vol. 294(2), pages 633-650.
    7. Ströhl, Florian & Borsch, Erik & Souren, Rainer, 2018. "Integration von Gewichtsrestriktionen in das DEA-Modell nach Charnes, Cooper und Rhodes: Exemplarische Optionen und Auswirkungen," Ilmenauer Schriften zur Betriebswirtschaftslehre, Technische Universität Ilmenau, Institut für Betriebswirtschaftslehre, volume 3, number 32018.
    8. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "A multiplier bound approach to assess relative efficiency in DEA without slacks," European Journal of Operational Research, Elsevier, vol. 203(1), pages 261-269, May.
    9. Diogo Cunha Ferreira & Rui Cunha Marques, 2020. "A step forward on order-α robust nonparametric method: inclusion of weight restrictions, convexity and non-variable returns to scale," Operational Research, Springer, vol. 20(2), pages 1011-1046, June.
    10. Podinovski, V. V., 2004. "Suitability and redundancy of non-homogeneous weight restrictions for measuring the relative efficiency in DEA," European Journal of Operational Research, Elsevier, vol. 154(2), pages 380-395, April.
    11. Victor Podinovski & Emmanuel Thanassoulis, 2007. "Improving discrimination in data envelopment analysis: some practical suggestions," Journal of Productivity Analysis, Springer, vol. 28(1), pages 117-126, October.
    12. Eduardo González & Ana Cárcaba & Juan Ventura, 2011. "Quality Of Life Ranking Of Spanish Municipalities," Revista de Economia Aplicada, Universidad de Zaragoza, Departamento de Estructura Economica y Economia Publica, vol. 19(2), pages 123-148, Autumn.
    13. Martin Bod’a & Martin Dlouhý & Emília Zimková, 2018. "Unobservable or omitted production variables in data envelopment analysis through unit-specific production trade-offs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 813-846, December.
    14. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    15. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    16. Dimitrov, Stanko & Sutton, Warren, 2010. "Promoting symmetric weight selection in data envelopment analysis: A penalty function approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 281-288, January.
    17. Ana Cárcaba & Eduardo González & Juan Ventura, 2017. "Social Progress in Spanish Municipalities (2001–2011)," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 12(4), pages 997-1019, December.
    18. Svetlana Ratner & Andrey Lychev & Aleksei Rozhnov & Igor Lobanov, 2021. "Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    19. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    20. Dovile Stumbriene & Ana S. Camanho & Audrone Jakaitiene, 2020. "The performance of education systems in the light of Europe 2020 strategy," Annals of Operations Research, Springer, vol. 288(2), pages 577-608, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:9:p:164-:d:168948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.