IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i9p1398-d1641856.html
   My bibliography  Save this article

Elite Evolutionary Discrete Particle Swarm Optimization for Recommendation Systems

Author

Listed:
  • Shanxian Lin

    (Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan)

  • Yifei Yang

    (Faculty of Science and Technology, Hirosaki University, Hirosaki-shi 036-8560, Japan)

  • Yuichi Nagata

    (Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan)

  • Haichuan Yang

    (Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan)

Abstract

Recommendation systems (RSs) play a vital role in e-commerce and content platforms, yet balancing efficiency and recommendation quality remains challenging. Traditional deep models are computationally expensive, while heuristic methods like particle swarm optimization struggle with discrete optimization. To address these limitations, this paper proposes elite-evolution-based discrete particle swarm optimization (EEDPSO), a novel framework specifically designed to optimize high-dimensional combinatorial recommendation tasks. EEDPSO restructures the velocity and position update mechanisms to operate effectively in discrete spaces, integrating neighborhood search, elite evolution strategies, and roulette-wheel selection to balance exploration and exploitation. Experiments on the MovieLens and Amazon datasets show that EEDPSO outperforms five metaheuristic algorithms (GA, DE, SA, SCA, and PSO) in both recommendation quality and computational efficiency. For datasets below the million-level scale, EEDPSO also demonstrates superior performance compared to deep learning models like FairGo. The results establish EEDPSO as a robust optimization strategy for recommendation systems that effectively handles the cold-start problem.

Suggested Citation

  • Shanxian Lin & Yifei Yang & Yuichi Nagata & Haichuan Yang, 2025. "Elite Evolutionary Discrete Particle Swarm Optimization for Recommendation Systems," Mathematics, MDPI, vol. 13(9), pages 1-36, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1398-:d:1641856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/9/1398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/9/1398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grigorios D. Konstantakopoulos & Sotiris P. Gayialis & Evripidis P. Kechagias, 2022. "Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification," Operational Research, Springer, vol. 22(3), pages 2033-2062, July.
    2. Yudong Zhang & Shuihua Wang & Genlin Ji, 2015. "A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-38, October.
    3. Lipowski, Adam & Lipowska, Dorota, 2012. "Roulette-wheel selection via stochastic acceptance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2193-2196.
    4. Shiyuan Yang & Hongtao Wang & Yihe Xu & Yongqiang Guo & Lidong Pan & Jiaming Zhang & Xinkai Guo & Debiao Meng & Jiapeng Wang, 2023. "A Coupled Simulated Annealing and Particle Swarm Optimization Reliability-Based Design Optimization Strategy under Hybrid Uncertainties," Mathematics, MDPI, vol. 11(23), pages 1-26, November.
    5. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudio Urrea, 2025. "Fatigue-Aware Sub-Second Combinatorial Auctions for Dynamic Cycle Allocation in Human–Robot Collaborative Assembly," Mathematics, MDPI, vol. 13(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    2. Jaime Acevedo-Chedid & Melissa Caro Soto & Holman Ospina-Mateus & Katherinne Salas-Navarro & Shib Sankar Sana, 2023. "An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods," Operations Management Research, Springer, vol. 16(4), pages 1742-1765, December.
    3. Asma Khalil Alkhamis & Manar Hosny, 2023. "A Multi-Objective Simulated Annealing Local Search Algorithm in Memetic CENSGA: Application to Vaccination Allocation for Influenza," Sustainability, MDPI, vol. 15(21), pages 1-37, October.
    4. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.
    5. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    6. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    7. Mariusz Korzeń & Maciej Kruszyna, 2023. "Modified Ant Colony Optimization as a Means for Evaluating the Variants of the City Railway Underground Section," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    8. Adeinat, Hamza & Pazhani, Subramanian & Mendoza, Abraham & Ventura, Jose A., 2022. "Coordination of pricing and inventory replenishment decisions in a supply chain with multiple geographically dispersed retailers," International Journal of Production Economics, Elsevier, vol. 248(C).
    9. Andrés Alfonso Rosales-Muñoz & Luis Fernando Grisales-Noreña & Jhon Montano & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2021. "Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    10. Y Xu & R Qu, 2011. "Solving multi-objective multicast routing problems by evolutionary multi-objective simulated annealing algorithms with variable neighbourhoods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 313-325, February.
    11. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    12. Mohammad Soleimani Amiri & Rizauddin Ramli & Ahmad Barari, 2023. "Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    13. S.-C. Horng & S.-Y. Lin, 2009. "Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 213-231, February.
    14. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    15. Tungom, Chia E. & Wang, Hong & Beata, Kamuya & Niu, Ben, 2024. "SWOAM: Swarm optimized agents for energy management in grid-interactive connected buildings," Energy, Elsevier, vol. 301(C).
    16. Xianbo Xiang & Caoyang Yu & He Xu & Stuart X. Zhu, 2018. "Optimization of Heterogeneous Container Loading Problem with Adaptive Genetic Algorithm," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    17. Samer Hanoun & Asim Bhatti & Doug Creighton & Saeid Nahavandi & Phillip Crothers & Celeste Gloria Esparza, 2016. "Target coverage in camera networks for manufacturing workplaces," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1221-1235, December.
    18. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    19. Yaghoubi, Saeed & Noori, Siamak & Azaron, Amir & Fynes, Brian, 2015. "Resource allocation in multi-class dynamic PERT networks with finite capacity," European Journal of Operational Research, Elsevier, vol. 247(3), pages 879-894.
    20. M. De Beule & D. Van Den Poel & N. Van De Weghe, 2013. "An extended Huff-model for robustly benchmarking and predicting retail network performance," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/866, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1398-:d:1641856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.