IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i8p1263-d1632882.html
   My bibliography  Save this article

Proposed Long Short-Term Memory Model Utilizing Multiple Strands for Enhanced Forecasting and Classification of Sensory Measurements

Author

Listed:
  • Sotirios Kontogiannis

    (Laboratory Team of Distributed Microcomputer Systems, Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece)

  • George Kokkonis

    (Department of Information and Electronic Engineering, International Hellenic University, 57001 Thessaloniki, Greece)

  • Christos Pikridas

    (School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

This paper presents a new deep learning model called the stranded Long Short-Term Memory. The model utilizes arbitrary LSTM recurrent neural networks of variable cell depths organized in classes. The proposed model can adapt to classifying emergencies at different intervals or provide measurement predictions using class-annotated or time-shifted series of sensory data inputs. In order to outperform the ordinary LSTM model’s classifications or forecasts by minimizing losses, stranded LSTM maintains three different weight-based strategies that can be arbitrarily selected prior to model training, as follows: least loss, weighted least loss, and fuzzy least loss in the LSTM model selection and inference process. The model has been tested against LSTM models for forecasting and classification, using a time series of temperature and humidity measurements taken from meteorological stations and class-annotated temperature measurements from Industrial compressors accordingly. From the experimental classification results, the stranded LSTM model outperformed 0.9–2.3% of the LSTM models carrying dual-stacked LSTM cells in terms of accuracy. Regarding the forecasting experimental results, the forecast aggregation weighted and fuzzy least loss strategies performed 5–7% better, with less loss, using the selected LSTM model strands supported by the model’s least loss strategy.

Suggested Citation

  • Sotirios Kontogiannis & George Kokkonis & Christos Pikridas, 2025. "Proposed Long Short-Term Memory Model Utilizing Multiple Strands for Enhanced Forecasting and Classification of Sensory Measurements," Mathematics, MDPI, vol. 13(8), pages 1-23, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1263-:d:1632882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/8/1263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/8/1263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
    2. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos & Artemios-Anargyros Semenoglou & Gary Mulder & Konstantinos Nikolopoulos, 2023. "Statistical, machine learning and deep learning forecasting methods: Comparisons and ways forward," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 840-859, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alnajjar, Khalid & Hämäläinen, Mika, 2024. "MLPESTEL: The New Era of Forecasting Change in the Operational Environment of Businesses Using LLMs," Thesis Commons qz8hk_v1, Center for Open Science.
    2. Luo, Run & Li, Yadong & Guo, Huiyu & Wang, Qi & Wang, Xiaolie, 2024. "Cross-operating-condition fault diagnosis of a small module reactor based on CNN-LSTM transfer learning with limited data," Energy, Elsevier, vol. 313(C).
    3. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    4. Chen, Fei & Ding, Chen & Hu, Xiaoxi & He, Xianghui & Yin, Xiuxing & Yang, Jiandong & Zhao, Zhigao, 2025. "Tensor Poincaré plot index: A novel nonlinear dynamic method for extracting abnormal state information of pumped storage units," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    5. Matara Caroline Mongina & Nyambane Simpson Osano & Yusuf Amir Okeyo & Ochungo Elisha Akech & Khattak Afaq, 2024. "Classification of Particulate Matter (PM2.5) Concentrations Using Feature Selection and Machine Learning Strategies," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 15(1), pages 85-96.
    6. Xiaodan Sheng & Yulan Tang & Shupeng Yue & Xu Yang & Yating He, 2025. "Characteristics and Prediction of Reservoir Water Quality under the Rainfall-Runoff Impact by Long Short-Term Memory Based Encoder-Decoder Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1281-1299, February.
    7. Jaehyun Jung & Muhammad Muzammil Azad & Heung Soo Kim, 2025. "Multi-Feature Extraction and Explainable Machine Learning for Lamb-Wave-Based Damage Localization in Laminated Composites," Mathematics, MDPI, vol. 13(5), pages 1-23, February.
    8. Long, Jian & Huang, Cheng & Deng, Kai & Wan, Lei & Hu, Guihua & Zhang, Feng, 2024. "Novel hybrid data-driven modeling integrating variational modal decomposition and dual-stage self-attention model: Applied to industrial petrochemical process," Energy, Elsevier, vol. 304(C).
    9. Yang, Tongguang & Xu, Mingzhe & Chen, Caipeng & Wen, Junyi & Li, Jinglan & Han, Qingkai, 2025. "DSTF-Net: A novel framework for intelligent diagnosis of insulated bearings in wind turbines with multi-source data and its interpretability," Renewable Energy, Elsevier, vol. 238(C).
    10. Ye, Wenlian & Liu, Yang & Zhou, Zhongyou & Hu, Lulu & Liu, Yingwen, 2025. "Performance prediction of an auto-cascade refrigeration system using multiple-algorithmic approaches," Energy, Elsevier, vol. 314(C).
    11. Xiao, Xiao & Zhang, Xuan & Song, Meiqi & Liu, Xiaojing & Huang, Qingyu, 2024. "NPP accident prevention: Integrated neural network for coupled multivariate time series prediction based on PSO and its application under uncertainty analysis for NPP data," Energy, Elsevier, vol. 305(C).
    12. Nengpeng Duan & Yun Zeng & Fang Dao & Shuxian Xu & Xianglong Luo, 2025. "Fault Diagnosis of Hydro-Turbine Based on CEEMDAN-MPE Preprocessing Combined with CPO-BILSTM Modelling," Energies, MDPI, vol. 18(6), pages 1-27, March.
    13. Stefenon, Stefano Frizzo & Seman, Laio Oriel & da Silva, Evandro Cardozo & Finardi, Erlon Cristian & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Hypertuned wavelet convolutional neural network with long short-term memory for time series forecasting in hydroelectric power plants," Energy, Elsevier, vol. 313(C).
    14. Wu, Zongjun & Cui, Ningbo & Zhang, Wenjiang & Yang, Yenan & Gong, Daozhi & Liu, Quanshan & Zhao, Lu & Xing, Liwen & He, Qingyan & Zhu, Shidan & Zheng, Shunsheng & Wen, Shenglin & Zhu, Bin, 2024. "Estimation of soil moisture in drip-irrigated citrus orchards using multi-modal UAV remote sensing," Agricultural Water Management, Elsevier, vol. 302(C).
    15. Wei, Yuan & Xiao, Zhijun & Chen, Xiangyan & Gu, Xiaohui & Schröder, Kai-Uwe, 2025. "A bearing fault data augmentation method based on hybrid-diversity loss diffusion model and parameter transfer," Reliability Engineering and System Safety, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1263-:d:1632882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.