IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1195-d1628270.html
   My bibliography  Save this article

Unit Size Determination for Exploratory Brain Imaging Analysis: A Quest for a Resolution-Invariant Metric

Author

Listed:
  • Jihnhee Yu

    (Department of Biostatistics, University at Buffalo, Buffalo, NY 14214, USA)

  • HyunAh Lee

    (Department of Biostatistics, University at Buffalo, Buffalo, NY 14214, USA)

  • Zohi Sternberg

    (Department of Neurology, University at Buffalo, Buffalo, NY 14203, USA)

Abstract

Defining an adequate unit size is often crucial in brain imaging analysis, where datasets are complex, high-dimensional, and computationally demanding. Unit size refers to the spatial resolution at which brain data is aggregated for analysis. Optimizing unit size in data aggregation requires balancing computational efficiency in handling large-scale data sets with the preservation of brain activity patterns, minimizing signal dilution. We propose using the Calinski–Harabasz index, demonstrating its invariance to sample size changes due to varying image resolutions when no distributional differences are present, while the index effectively identifies an appropriate unit size for detecting suspected regions in image comparisons. The resolution-independent metric can be used for unit size evaluation, ensuring adaptability across different imaging protocols and modalities. This study enhances the scalability and efficiency of brain imaging research by providing a robust framework for unit size optimization, ultimately strengthening analytical tools for investigating brain function and structure.

Suggested Citation

  • Jihnhee Yu & HyunAh Lee & Zohi Sternberg, 2025. "Unit Size Determination for Exploratory Brain Imaging Analysis: A Quest for a Resolution-Invariant Metric," Mathematics, MDPI, vol. 13(7), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1195-:d:1628270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    2. Whitcher, Brandon & Schmid, Volker J., 2011. "Quantitative Analysis of Dynamic Contrast-Enhanced and Diffusion-Weighted Magnetic Resonance Imaging for Oncology in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 44(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michelle Dietzen & Haoran Zhai & Olivia Lucas & Oriol Pich & Christopher Barrington & Wei-Ting Lu & Sophia Ward & Yanping Guo & Robert E. Hynds & Simone Zaccaria & Charles Swanton & Nicholas McGranaha, 2024. "Replication timing alterations are associated with mutation acquisition during breast and lung cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    4. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    5. Jeffrey L. Furman & Florenta Teodoridis, 2020. "Automation, Research Technology, and Researchers’ Trajectories: Evidence from Computer Science and Electrical Engineering," Organization Science, INFORMS, vol. 31(2), pages 330-354, March.
    6. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    7. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    8. Shu-Ping Shi & Yong Song, 2012. "Identifying Speculative Bubbles with an Infinite Hidden Markov Model," Working Paper series 26_12, Rimini Centre for Economic Analysis.
    9. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    10. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    11. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    12. Thomas R. W. Oliver & Lia Chappell & Rashesh Sanghvi & Lauren Deighton & Naser Ansari-Pour & Stefan C. Dentro & Matthew D. Young & Tim H. H. Coorens & Hyunchul Jung & Tim Butler & Matthew D. C. Nevill, 2022. "Clonal diversification and histogenesis of malignant germ cell tumours," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Gustaf Bellstam & Sanjai Bhagat & J. Anthony Cookson, 2021. "A Text-Based Analysis of Corporate Innovation," Management Science, INFORMS, vol. 67(7), pages 4004-4031, July.
    14. Michael L. Pennell & David B. Dunson, 2008. "Nonparametric Bayes Testing of Changes in a Response Distribution with an Ordinal Predictor," Biometrics, The International Biometric Society, vol. 64(2), pages 413-423, June.
    15. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    16. Hassan Akell & Farkhondeh-Alsadat Sajadi & Iraj Kazemi, 2023. "Construction of Jointly Distributed Random Samples Drawn from the Beta Two-Parameter Process," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-12, September.
    17. Hongxia Yang & Aurelie Lozano, 2015. "Multi-relational learning via hierarchical nonparametric Bayesian collective matrix factorization," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1133-1147, May.
    18. J. Griffin, 2011. "Bayesian clustering of distributions in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(3), pages 275-283, December.
    19. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    20. Markus Jochmann, 2015. "Modeling U.S. Inflation Dynamics: A Bayesian Nonparametric Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 537-558, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1195-:d:1628270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.