IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i6p1014-d1616735.html
   My bibliography  Save this article

Mathematical Modeling and Parameter Estimation of Lane-Changing Vehicle Behavior Decisions

Author

Listed:
  • Jianghui Wen

    (School of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430070, China)

  • Yebei Xu

    (School of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430070, China)

  • Min Dai

    (School of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430070, China)

  • Nengchao Lyu

    (Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430070, China)

Abstract

Lane changing is a crucial scenario in traffic environments, and accurately recognizing and predicting lane-changing behavior is essential for ensuring the safety of both autonomous vehicles and drivers. Through considering the multi-vehicle information interaction characteristics in lane-changing behavior for vehicles and the impact of driver experience needs on lane-changing decisions, this paper proposes a lane-changing model for vehicles to achieve safe and comfortable driving. Firstly, a lane-changing intention recognition model incorporating interaction effects was established to obtain the initial lane-changing intention probability of the vehicles. Secondly, by accounting for individual driving styles, a lane-changing behavior decision model was constructed based on a Gaussian mixture hidden Markov model (GMM-HMM) along with a parameter estimation method. The initial lane-changing intention probability serves as the input for the decision model, and the final lane-changing decision is made by comparing the probabilities of lane-changing and non-lane-changing scenarios. Finally, the model was validated using real-world data from the Next Generation Simulation (NGSIM) dataset, with empirical results demonstrating its high accuracy in recognizing and predicting lane-changing behavior. This study provides a robust framework for enhancing lane-changing decision making in complex traffic environments.

Suggested Citation

  • Jianghui Wen & Yebei Xu & Min Dai & Nengchao Lyu, 2025. "Mathematical Modeling and Parameter Estimation of Lane-Changing Vehicle Behavior Decisions," Mathematics, MDPI, vol. 13(6), pages 1-20, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:1014-:d:1616735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/6/1014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/6/1014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    2. Deng, Jian-Hua & Feng, Huan-Huan, 2019. "A multilane cellular automaton multi-attribute lane-changing decision model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Changxi & Li, Dong, 2023. "A review of vehicle lane change research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Bowen Gong & Zhipeng Xu & Ruixin Wei & Tao Wang & Ciyun Lin & Peng Gao, 2023. "Reinforcement Learning-Based Lane Change Decision for CAVs in Mixed Traffic Flow under Low Visibility Conditions," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    3. Wang, Jinghui & Lv, Wei & Jiang, Yajuan & Qin, Shuangshuang & Li, Jiawei, 2021. "A multi-agent based cellular automata model for intersection traffic control simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    4. Mingmin Guo & Zheng Wu & Huibing Zhu, 2018. "Empirical study of lane-changing behavior on three Chinese freeways," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    5. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.
    7. Kanagaraj, Venkatesan & Treiber, Martin, 2018. "Self-driven particle model for mixed traffic and other disordered flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1-11.
    8. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    9. Sermpis, Dimitris, 2007. "The Influence of Geometry on Operational Performance of Signal-Controlled Junctions," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(01).
    10. Chen, Kehua & Zhu, Meixin & Sun, Lijun & Yang, Hai, 2024. "Combining time dependency and behavioral game: A Deep Markov Cognitive Hierarchy Model for human-like discretionary lane changing modeling," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
    11. Ma, Yanli & Lv, Zhiliang & Zhang, Peng & Chan, Ching-Yao, 2021. "Impact of lane changing on adjacent vehicles considering multi-vehicle interaction in mixed traffic flow: A velocity estimating model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    12. Melo, Sandra & Macedo, Joaquim & Baptista, Patrícia, 2019. "Capacity-sharing in logistics solutions: A new pathway towards sustainability," Transport Policy, Elsevier, vol. 73(C), pages 143-151.
    13. Shi, Kunsong & Wu, Yuankai & Shi, Haotian & Zhou, Yang & Ran, Bin, 2022. "An integrated car-following and lane changing vehicle trajectory prediction algorithm based on a deep neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    14. Matteo Richiardi, 2003. "The New Italian Road Code and the Virtues of the ‘Shame Lane’," LABORatorio R. Revelli Working Papers Series 31, LABORatorio R. Revelli, Centre for Employment Studies.
    15. Rockwell International Science Center, 1992. "Potential Payoffs From Ivhs: A Framework For Analysis," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7gf7j8n2, Institute of Transportation Studies, UC Berkeley.
    16. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    17. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    18. Khelfa, Basma & Ba, Ibrahima & Tordeux, Antoine, 2023. "Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    19. Vladislav Krivda & Jan Petru & David Macha & Jakub Novak, 2021. "Use of Microsimulation Traffic Models as Means for Ensuring Public Transport Sustainability and Accessibility," Sustainability, MDPI, vol. 13(5), pages 1-38, March.
    20. Nima Dadashzadeh & Murat Ergun, 2019. "An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume," Sustainability, MDPI, vol. 11(22), pages 1-26, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:6:p:1014-:d:1616735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.