IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p770-d1600422.html
   My bibliography  Save this article

Analytical Pricing of Commodity Futures with Correlated Jumps and Seasonal Effects: An Empirical Study of Thailand’s Natural Rubber Market

Author

Listed:
  • Athinan Sutchada

    (Research Center for Data Science for Health Study, Division of Mathematics and Statistics, School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand)

  • Sanae Rujivan

    (Research Center for Data Science for Health Study, Division of Mathematics and Statistics, School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand)

  • Boualem Djehiche

    (Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

Abstract

This paper presents a novel multivariate mean-reverting jump-diffusion model that incorporates correlated jumps and seasonal effects to capture the complex dynamics of commodity prices. The model also accounts for the interplay between price volatility and convenience yield, offering a comprehensive framework for commodity futures pricing. By leveraging the Feynman–Kac theorem, we derive a partial integro-differential equation for the conditional moment generating function of the log price, enabling an analytical solution for pricing commodity futures. This solution is validated against Monte Carlo simulations, demonstrating high accuracy and computational efficiency. The model is empirically applied to historical futures prices of natural rubber from the Thailand Futures Exchange. Key parameters—including commodity price dynamics, convenience yields, and seasonal factors—are estimated, revealing the critical role of jumps and seasonality in influencing market behavior. Notably, our findings show that convenience yields are negative, reflecting higher inventory costs, and tend to increase with rising spot prices. These results provide actionable insights for traders, risk managers, and policymakers in commodity markets, emphasizing the importance of correlated jumps and seasonal patterns in pricing and risk assessment.

Suggested Citation

  • Athinan Sutchada & Sanae Rujivan & Boualem Djehiche, 2025. "Analytical Pricing of Commodity Futures with Correlated Jumps and Seasonal Effects: An Empirical Study of Thailand’s Natural Rubber Market," Mathematics, MDPI, vol. 13(5), pages 1-20, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:770-:d:1600422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    2. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    3. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    4. Svetlana Borovkova & Helyette Geman, 2006. "Seasonal and stochastic effects in commodity forward curves," Review of Derivatives Research, Springer, vol. 9(2), pages 167-186, September.
    5. Nicholas Kaldor, 1939. "Speculation and Economic Stability," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 7(1), pages 1-27.
    6. Carme Frau & Viviana Fanelli, 2024. "Correction to: Seasonality in commodity prices: new approaches for pricing plain vanilla options," Annals of Operations Research, Springer, vol. 332(1), pages 1297-1297, January.
    7. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    8. Hilliard, Jimmy E. & Reis, Jorge, 1998. "Valuation of Commodity Futures and Options under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 61-86, March.
    9. Carme Frau & Viviana Fanelli, 2024. "Seasonality in commodity prices: new approaches for pricing plain vanilla options," Annals of Operations Research, Springer, vol. 336(1), pages 1089-1131, May.
    10. repec:dau:papers:123456789/607 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    2. Ewald, Christian-Oliver & Haugom, Erik & Lien, Gudbrand & Størdal, Ståle & Wu, Yuexiang, 2022. "Trading time seasonality in commodity futures: An opportunity for arbitrage in the natural gas and crude oil markets?," Energy Economics, Elsevier, vol. 115(C).
    3. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    4. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, September.
    5. Constantino Hevia & Ivan Petrella & Martin Sola, 2018. "Risk premia and seasonality in commodity futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 853-873, September.
    6. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    7. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    8. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    9. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    10. Gareth William Peters & Mark Briers & Pavel Shevchenko & Arnaud Doucet, 2013. "Calibration and Filtering for Multi Factor Commodity Models with Seasonality: Incorporating Panel Data from Futures Contracts," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 841-874, December.
    11. Calum G. Turvey, 2006. "Managing food industry business and financial risks with commodity-linked credit instruments," Agribusiness, John Wiley & Sons, Ltd., vol. 22(4), pages 523-545.
    12. Philippe Raimbourg & Paul Zimmermann, 2022. "Is normal backwardation normal? Valuing financial futures with a local index-rate covariance," Post-Print hal-04011013, HAL.
    13. repec:dau:papers:123456789/9318 is not listed on IDEAS
    14. Sévi, Benoît, 2015. "Explaining the convenience yield in the WTI crude oil market using realized volatility and jumps," Economic Modelling, Elsevier, vol. 44(C), pages 243-251.
    15. Bahman Angoshtari & Tim Leung, 2020. "Optimal trading of a basket of futures contracts," Annals of Finance, Springer, vol. 16(2), pages 253-280, June.
    16. Ioannis Kyriakou & Nikos K. Nomikos & Nikos C. Papapostolou & Panos K. Pouliasis, 2016. "Affine†Structure Models and the Pricing of Energy Commodity Derivatives," European Financial Management, European Financial Management Association, vol. 22(5), pages 853-881, November.
    17. Mellios, Constantin & Six, Pierre & Lai, Anh Ngoc, 2016. "Dynamic speculation and hedging in commodity futures markets with a stochastic convenience yield," European Journal of Operational Research, Elsevier, vol. 250(2), pages 493-504.
    18. Bryant, Henry L. & Haigh, Michael S., 2003. "Comparing The Performances Of The Partial Equilibrium And Time-Series Approaches To Hedging," Working Papers 28580, University of Maryland, Department of Agricultural and Resource Economics.
    19. Alvaro Cartea & Marcelo Figueroa & Helyette Geman, 2009. "Modelling Electricity Prices with Forward Looking Capacity Constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 103-122.
    20. repec:dau:papers:123456789/6782 is not listed on IDEAS
    21. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    22. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:770-:d:1600422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.