IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v33y2018i6p853-873.html

Risk premia and seasonality in commodity futures

Author

Listed:
  • Constantino Hevia
  • Ivan Petrella
  • Martin Sola

Abstract

We develop and estimate a multifactor affine model of commodity futures that allows for stochastic seasonality. We document the existence of stochastic seasonal fluctuations in commodity futures and that properly accounting for the cost‐of‐carry curve requires at least three factors. We estimate the model using data on heating oil futures and analyze the contribution of the factors to risk premia. Correctly specifying seasonality as stochastic is important to avoid erroneously assigning those fluctuations to other risk factors. We also estimate a nonlinear version of the model that imposes the zero lower bound on interest rates and find similar results.

Suggested Citation

  • Constantino Hevia & Ivan Petrella & Martin Sola, 2018. "Risk premia and seasonality in commodity futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 853-873, September.
  • Handle: RePEc:wly:japmet:v:33:y:2018:i:6:p:853-873
    DOI: 10.1002/jae.2631
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2631
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandri, Piergiorgio & Gazzani, Andrea, 2025. "Natural gas and the macroeconomy: Not all energy shocks are alike," Journal of Monetary Economics, Elsevier, vol. 151(C).
    2. Czudaj, Robert L., 2019. "Dynamics between trading volume, volatility and open interest in agricultural futures markets: A Bayesian time-varying coefficient approach," Econometrics and Statistics, Elsevier, vol. 12(C), pages 78-145.
    3. Spencer, Simon & Bredin, Don, 2019. "Agreement matters: OPEC announcement effects on WTI term structure," Energy Economics, Elsevier, vol. 80(C), pages 589-609.
    4. Sania Wadud & Robert D. Durand & Marc Gronwald, 2021. "Connectedness between the Crude Oil Futures and Equity Markets during the Pre- and Post-Financialisation Eras," CESifo Working Paper Series 9202, CESifo.
    5. Markos Farag, Stephen Snudden, Greg Upton, 2024. "Can Futures Prices Predict the Real Price of Primary Commodities?," LCERPA Working Papers jc0145, Laurier Centre for Economic Research and Policy Analysis, revised 2024.
    6. Bredin, Don & O'Sullivan, Conall & Spencer, Simon, 2021. "Forecasting WTI crude oil futures returns: Does the term structure help?," Energy Economics, Elsevier, vol. 100(C).
    7. Dominik Boos, 2024. "Risky times: Seasonality and event risk of commodities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 767-783, May.
    8. Anthony Garratt & Shaun P. Vahey & Yunyi Zhang, 2019. "Real‐time forecast combinations for the oil price," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 456-462, April.
    9. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    10. Han Jun S. & Kordzakhia Nino & Shevchenko Pavel V. & Trück Stefan, 2022. "On correlated measurement errors in the Schwartz–Smith two-factor model," Dependence Modeling, De Gruyter, vol. 10(1), pages 108-122, January.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:33:y:2018:i:6:p:853-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.