IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p472-d1581188.html
   My bibliography  Save this article

Hybrid Multi-Objective Artificial Bee Colony for Flexible Assembly Job Shop with Learning Effect

Author

Listed:
  • Zhaosheng Du

    (Department of Mathematics, Yunnan Normal University, Kunming 650500, China
    School of Computer, Liaocheng University, Liaocheng 252000, China)

  • Junqing Li

    (Department of Mathematics, Yunnan Normal University, Kunming 650500, China
    School of Information Engineering, HengXing University, Qingdao 266104, China)

  • Jiake Li

    (Department of Mathematics, Yunnan Normal University, Kunming 650500, China)

Abstract

The flexible job shop scheduling problem is a typical and complex combinatorial optimization problem. In recent years, the assembly problem in job shop scheduling problems has been widely studied. However, most of the studies ignore the learning effect of workers, which may lead to higher costs than necessary. This paper considers a flexible assembly job scheduling problem with learning effect (FAJSPLE) and proposes a hybrid multi-objective artificial bee colony (HMABC) algorithm to solve the problem. Firstly, a mixed integer linear programming model is developed where the maximum completion time (makespan), total energy consumption and total cost are optimized simultaneously. Secondly, a critical path-based mutation strategy was designed to dynamically adjust the level of workers according to the characteristics of the critical path. Finally, the local search capability is enhanced by combining the simulated annealing algorithm (SA), and four search operators with different neighborhood structures are designed. By comparative analysis on different scales instances, the proposed algorithm reduces 55.8 and 958.99 on average over the comparison algorithms for the GD and IGD metrics, respectively; for the C-metric, the proposed algorithm improves 0.036 on average over the comparison algorithms.

Suggested Citation

  • Zhaosheng Du & Junqing Li & Jiake Li, 2025. "Hybrid Multi-Objective Artificial Bee Colony for Flexible Assembly Job Shop with Learning Effect," Mathematics, MDPI, vol. 13(3), pages 1-25, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:472-:d:1581188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hurink, Johann & Knust, Sigrid, 2005. "Tabu search algorithms for job-shop problems with a single transport robot," European Journal of Operational Research, Elsevier, vol. 162(1), pages 99-111, April.
    2. Dominik Kress & David Müller & Jenny Nossack, 2019. "A worker constrained flexible job shop scheduling problem with sequence-dependent setup times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 179-217, March.
    3. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    2. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    3. Berterottière, Lucas & Dauzère-Pérès, Stéphane & Yugma, Claude, 2024. "Flexible job-shop scheduling with transportation resources," European Journal of Operational Research, Elsevier, vol. 312(3), pages 890-909.
    4. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.
    5. Xiaoyan Li & Xuedong Liang & Zhi Li, 2023. "The Strategy of Strengthening Efficiency and Environmental Performance of Product Changeover in the Multiproduct Production System," SAGE Open, , vol. 13(3), pages 21582440231, September.
    6. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    7. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    8. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    9. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    10. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.
    12. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    13. Feng, Yanling & Li, Guo & Sethi, Suresh P., 2018. "A three-layer chromosome genetic algorithm for multi-cell scheduling with flexible routes and machine sharing," International Journal of Production Economics, Elsevier, vol. 196(C), pages 269-283.
    14. Aidin Delgoshaei & Mohd Khairol Anuar Bin Mohd Ariffin & Zulkiflle B. Leman, 2022. "An Effective 4–Phased Framework for Scheduling Job-Shop Manufacturing Systems Using Weighted NSGA-II," Mathematics, MDPI, vol. 10(23), pages 1-28, December.
    15. Olatunde T. Baruwa & Miquel A. Piera, 2016. "A coloured Petri net-based hybrid heuristic search approach to simultaneous scheduling of machines and automated guided vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4773-4792, August.
    16. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    17. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
    18. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    19. Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
    20. Zhangying Xu & Qi Jia & Kaizhou Gao & Yaping Fu & Li Yin & Qiangqiang Sun, 2024. "Integrated Scheduling of Multi-Objective Job Shops and Material Handling Robots with Reinforcement Learning Guided Meta-Heuristics," Mathematics, MDPI, vol. 13(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:472-:d:1581188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.