IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i1p145-d1558968.html
   My bibliography  Save this article

Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles

Author

Listed:
  • Xiaoli Wang

    (School of Computer Science and Technology, Xidian University, Xi’an 710071, China)

  • Zhiyu Zhang

    (School of Computer Science and Technology, Xidian University, Xi’an 710071, China)

  • Mengmeng Jiang

    (School of Computer Science and Technology, Xidian University, Xi’an 710071, China)

  • Yifan Wang

    (School of Computer Science and Technology, Xidian University, Xi’an 710071, China)

  • Yuping Wang

    (School of Computer Science and Technology, Xidian University, Xi’an 710071, China)

Abstract

Autonomous electric vehicle (AEV) services leverage advanced autonomous driving and electric vehicle technologies to provide innovative, driverless transportation solutions. The biggest challenge faced by AEVs is the limited number of charging stations and long charging times. A critical challenge is maximizing passenger travel satisfaction while reducing the AEV idle time. This involves coordinating passenger transport and charging tasks via leveraging the information from charging stations, passenger transport, and AEV data. There are four important contributions in this paper. Firstly, we introduce an integrated scheduling model that considers both passenger transport and charging tasks. Secondly, we propose a multi-level differentiated charging threshold strategy, which dynamically adjusts the charging threshold based on both AEV battery levels and the availability of charging stations, reducing competition among vehicles and minimizing waiting times. Thirdly, we develop a rapid strategy to optimize the selection of charging stations by combining geographic and deviation distance. Fourthly, we design a new evolutionary algorithm to solve the proposed model, in which a buffer space is introduced to promote diversity within the population. Finally, experimental results show that compared to the existing state-of-the-art scheduling algorithms, the proposed algorithm shortens the running time of scheduling algorithms by 6.72% and reduces the idle driving time of AEVs by 6.53%, which proves the effectiveness and efficiency of the proposed model and algorithm.

Suggested Citation

  • Xiaoli Wang & Zhiyu Zhang & Mengmeng Jiang & Yifan Wang & Yuping Wang, 2025. "Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles," Mathematics, MDPI, vol. 13(1), pages 1-22, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:1:p:145-:d:1558968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/1/145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/1/145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    2. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    2. Tingxin Wen & Haoting Meng, 2025. "Time-Dependent Multi-Center Semi-Open Heterogeneous Fleet Path Optimization and Charging Strategy," Mathematics, MDPI, vol. 13(7), pages 1-27, March.
    3. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    4. Gitae Kim, 2024. "Electric Vehicle Routing Problem with States of Charging Stations," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    5. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    6. Alberto Ponso & Angelo Bonfitto & Giovanni Belingardi, 2023. "Route Planning for Electric Vehicles Including Driving Style, HVAC, Payload and Battery Health," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    8. Wei, Tangjian & Batley, Richard & Liu, Ronghui & Xu, Guangming & Tang, Yili, 2024. "A method of time-varying demand distribution estimation for high-speed railway networks with user equilibrium model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    9. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    10. Alberto Ceselli & Ángel Felipe & M. Teresa Ortuño & Giovanni Righini & Gregorio Tirado, 2021. "A Branch-and-Cut-and-Price Algorithm for the Electric Vehicle Routing Problem with Multiple Technologies," SN Operations Research Forum, Springer, vol. 2(1), pages 1-33, March.
    11. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    12. Sina Abbasi & Maryam Moosivand & Ilias Vlachos & Mohammad Talooni, 2023. "Designing the Location–Routing Problem for a Cold Supply Chain Considering the COVID-19 Disaster," Sustainability, MDPI, vol. 15(21), pages 1-24, October.
    13. Gansterer, Margaretha & Födermayr, Patrick & Hartl, Richard F., 2021. "The capacitated multi-level lot-sizing problem with distributed agents," International Journal of Production Economics, Elsevier, vol. 235(C).
    14. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    15. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    16. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    17. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    18. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    19. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    20. Lai, Kexing & Chen, Tao & Natarajan, Balasubramaniam, 2020. "Optimal scheduling of electric vehicles car-sharing service with multi-temporal and multi-task operation," Energy, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:1:p:145-:d:1558968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.