IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i14p2274-d1701913.html
   My bibliography  Save this article

Unveiling Hidden Dynamics in Air Traffic Networks: An Additional-Symmetry-Inspired Framework for Flight Delay Prediction

Author

Listed:
  • Chao Yin

    (School of Management, Guizhou University, Guiyang 550025, China)

  • Xinke Du

    (School of Business, Shanghai Normal University Tianhua College, Shanghai 201815, China)

  • Jianyu Duan

    (School of Transportation Science and Engineering, Beihang University, Beijing 100080, China)

  • Qiang Tang

    (School of Artificial Intelligence, Anhui University of Science and Technology, Hefei 231131, China)

  • Li Shen

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100080, China)

Abstract

Flight delays pose a significant challenge to the modern aviation industry, with prediction difficulties arising from the need to accurately model spatio-temporal dependencies and uncertainties within complex air traffic networks. To address this challenge, this study proposes a novel hybrid predictive framework named DenseNet-LSTM-FBLS. The framework first employs a DenseNet-LSTM module for deep spatio-temporal feature extraction, where DenseNet captures the intricate spatial correlations between airports, and LSTM models the temporal evolution of delays and meteorological conditions. In a key innovation, the extracted features are fed into a Fuzzy Broad Learning System (FBLS)—marking the first application of this method in the field of flight delay prediction. The FBLS component effectively handles data uncertainty through its fuzzy logic, while its “broad” architecture offers greater computational efficiency compared to traditional deep networks. Validated on a large-scale dataset of 198,970 real-world European flights, the proposed model achieves a prediction accuracy of 92.71%, significantly outperforming various baseline models. The results demonstrate that the DenseNet-LSTM-FBLS framework provides a highly accurate and efficient solution for flight delay forecasting, highlighting the considerable potential of Fuzzy Broad Learning Systems for tackling complex real-world prediction tasks.

Suggested Citation

  • Chao Yin & Xinke Du & Jianyu Duan & Qiang Tang & Li Shen, 2025. "Unveiling Hidden Dynamics in Air Traffic Networks: An Additional-Symmetry-Inspired Framework for Flight Delay Prediction," Mathematics, MDPI, vol. 13(14), pages 1-22, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2274-:d:1701913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/14/2274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/14/2274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingyi Qu & Shixing Wu & Jinjie Zhang, 2023. "Flight Delay Propagation Prediction Based on Deep Learning," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    2. Ziming Wang & Chaohao Liao & Xu Hang & Lishuai Li & Daniel Delahaye & Mark Hansen, 2022. "Distribution Prediction of Strategic Flight Delays via Machine Learning Methods," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    3. Alexandre Jacquillat & Amedeo R. Odoni, 2015. "An Integrated Scheduling and Operations Approach to Airport Congestion Mitigation," Operations Research, INFORMS, vol. 63(6), pages 1390-1410, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wandelt, Sebastian & Wang, Shuang & Chen, Xinyue & Zheng, Changhong & Chang, Shuming & Sun, Xiaoqian, 2025. "Network structures in air transportation: A comprehensive review of applications and challenges," Journal of Air Transport Management, Elsevier, vol. 126(C).
    2. Cavusoglu, Sabriye Sera & Macário, Rosário, 2021. "Minimum delay or maximum efficiency? Rising productivity of available capacity at airports: Review of current practice and future needs," Journal of Air Transport Management, Elsevier, vol. 90(C).
    3. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    4. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    6. Wang, Yiqun & Ni, Yaodong, 2025. "Airport slot allocation with low-carbon consideration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    7. Till Kösters & Marlena Meier & Gernot Sieg, 2023. "Effects of the use-it-or-lose-it rule on airline strategy and climate," Working Papers 36, Institute of Transport Economics, University of Muenster.
    8. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    9. Pellegrini, Paola & Bolić, Tatjana & Castelli, Lorenzo & Pesenti, Raffaele, 2017. "SOSTA: An effective model for the Simultaneous Optimisation of airport SloT Allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 34-53.
    10. Woo, Young-Bin & Moon, Ilkyeong, 2021. "Scenario-based stochastic programming for an airline-driven flight rescheduling problem under ground delay programs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    11. Androutsopoulos, Konstantinos N. & Madas, Michael A., 2019. "Being fair or efficient? A fairness-driven modeling extension to the strategic airport slot scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 37-60.
    12. Ball, Michael O. & Berardino, Frank & Hansen, Mark, 2018. "The use of auctions for allocating airport access rights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 186-202.
    13. Schrotenboer, Albert H. & Wenneker, Rob & Ursavas, Evrim & Zhu, Stuart X., 2023. "Reliable reserve-crew scheduling for airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    14. Jacquillat, Alexandre & Odoni, Amedeo R., 2018. "A roadmap toward airport demand and capacity management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 168-185.
    15. Chen, Shuiwang & Wu, Lingxiao & Ng, Kam K.H. & Liu, Wei & Wang, Kun, 2024. "How airports enhance the environmental sustainability of operations: A critical review from the perspective of Operations Research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    16. Androutsopoulos, Konstantinos N. & Manousakis, Eleftherios G. & Madas, Michael A., 2020. "Modeling and solving a bi-objective airport slot scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 135-151.
    17. Weihao Ouyang & Xiaohong Zhu, 2023. "Meta-Heuristic Solver with Parallel Genetic Algorithm Framework in Airline Crew Scheduling," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    18. Jorge, Diana & Antunes Ribeiro, Nuno & Pais Antunes, António, 2021. "Towards a decision-support tool for airport slot allocation: Application to Guarulhos (Sao Paulo, Brazil)," Journal of Air Transport Management, Elsevier, vol. 93(C).
    19. Katsigiannis, Fotios A. & Zografos, Konstantinos G., 2021. "Optimising airport slot allocation considering flight-scheduling flexibility and total airport capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 50-87.
    20. Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2023. "A data aggregation-based spatiotemporal model for rail transit risk path forecasting," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2274-:d:1701913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.