IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v239y2023ics0951832023004441.html
   My bibliography  Save this article

A data aggregation-based spatiotemporal model for rail transit risk path forecasting

Author

Listed:
  • Xue, Gang
  • Liu, Shifeng
  • Ren, Long
  • Gong, Daqing

Abstract

Failure-related urban rail events can disrupt transit system operations and traffic flow and lead to serious safety problems worldwide. A domino effect can occur if potential cascading events of major failures are not effectively mitigated and controlled. Therefore, accurate risk path forecasting in rail transit systems is a significant and challenging task. Because of the limitations of traditional models in terms of computational power and feature extraction capabilities, this paper proposes a probabilistic deep learning framework that can process multisource data for risk path forecasting in urban rail transit. This paper first proposes a method for constructing a large-scale risk path ground truth dataset when fault events occur. Then, the framework uses a graph-based feature mapping method to model social media, passenger flow, and station failure information. Finally, we proposed a spatiotemporal feature extractor and a dynamic difference weighting loss function to extract features and optimize parameters. We apply real-world data from 2018 to 2019 from the Beijing urban rail transit system for experimental analysis. The analyzed results demonstrate that the proposed model exceeds the baseline models by at least 2.9% in terms of F1 value, fusing multi-source data exceeds using single-source data by at least 14% in terms of F1 value and the proposed attention mechanism and dynamic loss function weights can effectively improve the forecasting performance of the model. Furthermore, the results of the different steps ahead demonstrate that the above results are robust. The application of the model can effectively handle safety issues such as cascade failures.

Suggested Citation

  • Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2023. "A data aggregation-based spatiotemporal model for rail transit risk path forecasting," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:reensy:v:239:y:2023:i:c:s0951832023004441
    DOI: 10.1016/j.ress.2023.109530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Jingyi Qu & Shixing Wu & Jinjie Zhang, 2023. "Flight Delay Propagation Prediction Based on Deep Learning," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    3. Zhang, Yifan & Ng, S. Thomas, 2022. "Robustness of urban railway networks against the cascading failures induced by the fluctuation of passenger flow," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Yanyan Liu & Keping Li & Dongyang Yan & Shuang Gu, 2023. "The prediction of disaster risk paths based on IECNN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 163-188, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    5. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Zhao, Yixin & Cai, Baoping & Kang, Henry Hooi-Siang & Liu, Yiliu, 2023. "Cascading failure analysis of multistate loading dependent systems with application in an overloading piping network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Arif Jamal Siddiqui & Sadaf Jahan & Maqsood Ahmed Siddiqui & Andleeb Khan & Mohammed Merae Alshahrani & Riadh Badraoui & Mohd Adnan, 2023. "Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Desig," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    10. Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Bešinović, Nikola & Ferrari Nassar, Raphael & Szymula, Christopher, 2022. "Resilience assessment of railway networks: Combining infrastructure restoration and transport management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Dingding Yang & Yu Zheng & Kai Peng & Lidong Pan & Juan Zheng & Baojing Xie & Bohong Wang, 2022. "Characteristics and Statistical Analysis of Large and above Hazardous Chemical Accidents in China from 2000 to 2020," IJERPH, MDPI, vol. 19(23), pages 1-27, November.
    14. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    15. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Jakub Waikat & Amel Jelidi & Sandro Lic & Georgios Sopidis & Olaf Kähler & Anna Maly & Jesús Pestana & Ferdinand Fuhrmann & Fredi Belavić, 2024. "First Measurement Campaign by a Multi-Sensor Robot for the Lifecycle Monitoring of Transformers," Energies, MDPI, vol. 17(5), pages 1-26, February.
    17. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Shen, Yi & Yang, Huang & Xie, Yuangcheng & Liu, Yang & Ren, Gang, 2023. "Adaptive robustness optimization against network cascading congestion induced by fluctuant load via a bilateral-adaptive strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    19. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:239:y:2023:i:c:s0951832023004441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.