IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i12p1959-d1678771.html
   My bibliography  Save this article

Kernel Ridge-Type Shrinkage Estimators in Partially Linear Regression Models with Correlated Errors

Author

Listed:
  • Syed Ejaz Ahmed

    (Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A, Canada)

  • Ersin Yilmaz

    (Department of Computer Science, Aalto University, Konemiehentie 2, 02150 Espoo, Finland
    Department of Statistics, Faculty of Science, Mugla Sitki Kocman University, Mugla 4800, Turkey)

  • Dursun Aydın

    (Department of Statistics, Faculty of Science, Mugla Sitki Kocman University, Mugla 4800, Turkey
    Department of Mathematics, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA)

Abstract

Partially linear time series models often suffer from multicollinearity among regressors and autocorrelated errors, both of which can inflate estimation risk. This study introduces a generalized ridge-type kernel (GRTK) framework that combines kernel smoothing with ridge shrinkage and augments it through ordinary and positive-part Stein adjustments. Closed-form expressions and large-sample properties are established, and data-driven criteria—including GCV, AICc, BIC, and RECP—are used to tune the bandwidth and shrinkage penalties. Monte-Carlo simulations indicate that the proposed procedures usually reduce risk relative to existing semiparametric alternatives, particularly when the predictors are strongly correlated and the error process is dependent. An empirical study of US airline-delay data further demonstrates that GRTK produces a stable, interpretable fit, captures a nonlinear air-time effect overlooked by conventional approaches, and leaves only a modest residual autocorrelation. By tackling multicollinearity and autocorrelation within a single, flexible estimator, the GRTK family offers practitioners a practical avenue for more reliable inference in partially linear time series settings.

Suggested Citation

  • Syed Ejaz Ahmed & Ersin Yilmaz & Dursun Aydın, 2025. "Kernel Ridge-Type Shrinkage Estimators in Partially Linear Regression Models with Correlated Errors," Mathematics, MDPI, vol. 13(12), pages 1-33, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1959-:d:1678771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/12/1959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/12/1959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    2. Schick, Anton, 1996. "Efficient estimation in a semiparametric additive regression model with autoregressive errors," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 339-361, February.
    3. Özkale, M. Revan, 2008. "A jackknifed ridge estimator in the linear regression model with heteroscedastic or correlated errors," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3159-3169, December.
    4. Schick, Anton, 1996. "Root-n-consistent and efficient estimation in semiparametric additive regression models," Statistics & Probability Letters, Elsevier, vol. 30(1), pages 45-51, September.
    5. Yousri Slaoui, 2022. "Recursive kernel regression estimation under α – mixing data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(24), pages 8459-8475, December.
    6. M. Nooi Asl & H. Bevrani & R. Arabi Belaghi & K. Mansson, 2021. "Ridge-type shrinkage estimators in generalized linear models with an application to prostate cancer data," Statistical Papers, Springer, vol. 62(2), pages 1043-1085, April.
    7. You, Jinhong & Zhou, Yong, 2006. "Empirical likelihood for semiparametric varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 412-422, February.
    8. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forrester Jeffrey S. & Hooper William J. & Peng Hanxiang & Schick Anton, 2003. "On the construction of efficient estimators in semiparametric models," Statistics & Risk Modeling, De Gruyter, vol. 21(2), pages 109-138, February.
    2. He, Bang-Qiang & Hong, Xing-Jian & Fan, Guo-Liang, 2017. "Block empirical likelihood for partially linear panel data models with fixed effects," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 128-138.
    3. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    4. Huang, Zhensheng & Zhou, Zhangong & Jiang, Rong & Qian, Weimin & Zhang, Riquan, 2010. "Empirical likelihood based inference for semiparametric varying coefficient partially linear models with error-prone linear covariates," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 497-504, March.
    5. Arash Nademi & Rahman Farnoosh, 2014. "Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 275-293, February.
    6. Hu, Xuemei & Wang, Zhizhong & Zhao, Zhiwei, 2009. "Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1044-1052, April.
    7. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    8. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    9. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    10. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    11. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    12. Fiteni, Inmaculada, 2004. "[tau]-estimators of regression models with structural change of unknown location," Journal of Econometrics, Elsevier, vol. 119(1), pages 19-44, March.
    13. Rajae Azrak & Guy Mélard, 2022. "Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches," Stats, MDPI, vol. 5(3), pages 1-21, August.
    14. Wei Yu & Cuizhen Niu & Wangli Xu, 2014. "An empirical likelihood inference for the coefficient difference of a two-sample linear model with missing response data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 675-693, July.
    15. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    16. Huang, Ho-Chuan, 2005. "Diverging evidence of convergence hypothesis," Journal of Macroeconomics, Elsevier, vol. 27(2), pages 233-255, June.
    17. de Jong, Robert M. & Woutersen, Tiemen, 2011. "Dynamic Time Series Binary Choice," Econometric Theory, Cambridge University Press, vol. 27(4), pages 673-702, August.
    18. Gonçalves, Sílvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1367-1384, December.
    19. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    20. Itai Arieli & Manuel Mueller-Frank, 2019. "Multidimensional Social Learning," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 913-940.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1959-:d:1678771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.