IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i12p1959-d1678771.html
   My bibliography  Save this article

Kernel Ridge-Type Shrinkage Estimators in Partially Linear Regression Models with Correlated Errors

Author

Listed:
  • Syed Ejaz Ahmed

    (Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A, Canada)

  • Ersin Yilmaz

    (Department of Computer Science, Aalto University, Konemiehentie 2, 02150 Espoo, Finland
    Department of Statistics, Faculty of Science, Mugla Sitki Kocman University, Mugla 4800, Turkey)

  • Dursun Aydın

    (Department of Statistics, Faculty of Science, Mugla Sitki Kocman University, Mugla 4800, Turkey
    Department of Mathematics, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI 54901, USA)

Abstract

Partially linear time series models often suffer from multicollinearity among regressors and autocorrelated errors, both of which can inflate estimation risk. This study introduces a generalized ridge-type kernel (GRTK) framework that combines kernel smoothing with ridge shrinkage and augments it through ordinary and positive-part Stein adjustments. Closed-form expressions and large-sample properties are established, and data-driven criteria—including GCV, AICc, BIC, and RECP—are used to tune the bandwidth and shrinkage penalties. Monte-Carlo simulations indicate that the proposed procedures usually reduce risk relative to existing semiparametric alternatives, particularly when the predictors are strongly correlated and the error process is dependent. An empirical study of US airline-delay data further demonstrates that GRTK produces a stable, interpretable fit, captures a nonlinear air-time effect overlooked by conventional approaches, and leaves only a modest residual autocorrelation. By tackling multicollinearity and autocorrelation within a single, flexible estimator, the GRTK family offers practitioners a practical avenue for more reliable inference in partially linear time series settings.

Suggested Citation

  • Syed Ejaz Ahmed & Ersin Yilmaz & Dursun Aydın, 2025. "Kernel Ridge-Type Shrinkage Estimators in Partially Linear Regression Models with Correlated Errors," Mathematics, MDPI, vol. 13(12), pages 1-33, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1959-:d:1678771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/12/1959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/12/1959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Jian & Lau, Tai-Shing, 2000. "Empirical Likelihood for Partially Linear Models," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 132-148, January.
    2. Schick, Anton, 1996. "Efficient estimation in a semiparametric additive regression model with autoregressive errors," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 339-361, February.
    3. Özkale, M. Revan, 2008. "A jackknifed ridge estimator in the linear regression model with heteroscedastic or correlated errors," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3159-3169, December.
    4. Schick, Anton, 1996. "Root-n-consistent and efficient estimation in semiparametric additive regression models," Statistics & Probability Letters, Elsevier, vol. 30(1), pages 45-51, September.
    5. Lee, Thomas C. M., 2003. "Smoothing parameter selection for smoothing splines: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 139-148, February.
    6. M. Nooi Asl & H. Bevrani & R. Arabi Belaghi & K. Mansson, 2021. "Ridge-type shrinkage estimators in generalized linear models with an application to prostate cancer data," Statistical Papers, Springer, vol. 62(2), pages 1043-1085, April.
    7. Yousri Slaoui, 2022. "Recursive kernel regression estimation under α – mixing data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(24), pages 8459-8475, December.
    8. You, Jinhong & Zhou, Yong, 2006. "Empirical likelihood for semiparametric varying-coefficient partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 412-422, February.
    9. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    10. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    3. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    4. Huang, Zhensheng & Zhou, Zhangong & Jiang, Rong & Qian, Weimin & Zhang, Riquan, 2010. "Empirical likelihood based inference for semiparametric varying coefficient partially linear models with error-prone linear covariates," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 497-504, March.
    5. Jang, Dongik & Oh, Hee-Seok, 2011. "Enhancement of spatially adaptive smoothing splines via parameterization of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1029-1040, February.
    6. Arash Nademi & Rahman Farnoosh, 2014. "Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 275-293, February.
    7. Hu, Xuemei & Wang, Zhizhong & Zhao, Zhiwei, 2009. "Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1044-1052, April.
    8. Lee, Thomas C. M., 2004. "Improved smoothing spline regression by combining estimates of different smoothness," Statistics & Probability Letters, Elsevier, vol. 67(2), pages 133-140, April.
    9. Forrester Jeffrey S. & Hooper William J. & Peng Hanxiang & Schick Anton, 2003. "On the construction of efficient estimators in semiparametric models," Statistics & Risk Modeling, De Gruyter, vol. 21(2), pages 109-138, February.
    10. He, Bang-Qiang & Hong, Xing-Jian & Fan, Guo-Liang, 2017. "Block empirical likelihood for partially linear panel data models with fixed effects," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 128-138.
    11. Kim, Young-Ju, 2011. "A comparative study of nonparametric estimation in Weibull regression: A penalized likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1884-1896, April.
    12. Dursun AYDIN & Ersin YILMAZ, 2017. "Bandwidth Selection Problem for Nonparametric Regression Model with Right-Censored Data," Romanian Statistical Review, Romanian Statistical Review, vol. 65(2), pages 81-104, June.
    13. Eduardo L. Montoya, 2020. "On the Number of Independent Pieces of Information in a Functional Linear Model with a Scalar Response," Stats, MDPI, vol. 3(4), pages 1-16, November.
    14. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    15. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    16. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    17. Donald W.K. Andrews, 2017. "Identification-Robust Subvector Inference," Cowles Foundation Discussion Papers 2105, Cowles Foundation for Research in Economics, Yale University, revised Sep 2017.
    18. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    19. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    20. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1959-:d:1678771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.