IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i11p1828-d1668322.html
   My bibliography  Save this article

Learning Parameter Dependence for Fourier-Based Option Pricing with Tensor Trains

Author

Listed:
  • Rihito Sakurai

    (Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
    Department of Physics, Saitama University, Saitama 338-8570, Japan)

  • Haruto Takahashi

    (Department of Physics, Saitama University, Saitama 338-8570, Japan)

  • Koichi Miyamoto

    (Center for Quantum Information and Quantum Biology, The University of Osaka, Osaka 560-0043, Japan)

Abstract

A long-standing issue in mathematical finance is the speed-up of option pricing, especially for multi-asset options. A recent study has proposed to use tensor train learning algorithms to speed up Fourier transform (FT)-based option pricing, utilizing the ability of tensor trains to compress high-dimensional tensors. In this study, we focus on another usage of the tensor train, which is to compress functions, including their parameter dependence. Here, we propose a pricing method, where, by a tensor train learning algorithm, we build tensor trains that approximate functions appearing in FT-based option pricing with their parameter dependence and efficiently calculate the option price for the varying input parameters. As a benchmark test, we run the proposed method to price a multi-asset option for the various values of volatilities or present asset prices. We show that, in the tested cases involving up to 11 assets, the proposed method outperforms Monte Carlo-based option pricing with 10 6 paths in terms of computational complexity while keeping better accuracy.

Suggested Citation

  • Rihito Sakurai & Haruto Takahashi & Koichi Miyamoto, 2025. "Learning Parameter Dependence for Fourier-Based Option Pricing with Tensor Trains," Mathematics, MDPI, vol. 13(11), pages 1-16, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1828-:d:1668322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/11/1828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/11/1828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    2. Christian Bayer & Markus Siebenmorgen & Raul Tempone, 2018. "Smoothing the payoff for efficient computation of Basket option prices," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 491-505, March.
    3. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    4. Stulz, ReneM., 1982. "Options on the minimum or the maximum of two risky assets : Analysis and applications," Journal of Financial Economics, Elsevier, vol. 10(2), pages 161-185, July.
    5. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Michael Samet & Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Ra'ul Tempone, 2022. "Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in L\'evy Models," Papers 2203.08196, arXiv.org, revised Oct 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Luiz Vitiello & Ivonia Rebelo, 2015. "A note on the pricing of multivariate contingent claims under a transformed-gamma distribution," Review of Derivatives Research, Springer, vol. 18(3), pages 291-300, October.
    4. Feunou Bruno & Tafolong Ernest, 2015. "Fourier inversion formulas for multiple-asset option pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 531-559, December.
    5. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    6. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.
    7. Philipp Mayer & Natalie Packham & Wolfgang Schmidt, 2015. "Static hedging under maturity mismatch," Finance and Stochastics, Springer, vol. 19(3), pages 509-539, July.
    8. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.
    9. Xun Li & Zhenyu Wu, 2006. "A semi-analytic method for valuing high-dimensional options on the maximum and minimum of multiple assets," Annals of Finance, Springer, vol. 2(2), pages 179-205, March.
    10. Ahmadian, D. & Ballestra, L.V. & Shokrollahi, F., 2022. "A Monte-Carlo approach for pricing arithmetic Asian rainbow options under the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Wang, Libin & Liu, Lixia, 2025. "Some bivariate options pricing in a regime-switching stochastic volatility jump-diffusion model with stochastic intensity, stochastic interest and dependent jump," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 468-490.
    12. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    13. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    14. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2017. "Fluctuation identities with continuous monitoring and their application to price barrier options," Papers 1712.00077, arXiv.org.
    15. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    16. Kathrin Glau & Daniel Kressner & Francesco Statti, 2019. "Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing," Papers 1902.04367, arXiv.org.
    17. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    18. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    19. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    20. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1828-:d:1668322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.