Author
Listed:
- Guanyu Chen
(School of Public Affairs, Xiamen University, Xiamen 361005, China)
- Tao Li
(Smart State Governance Lab, Shandong University, Qingdao 266237, China
School of Political Science and Public Administration, Shandong University, Qingdao 266237, China)
- Liguo Fei
(Smart State Governance Lab, Shandong University, Qingdao 266237, China
School of Political Science and Public Administration, Shandong University, Qingdao 266237, China)
Abstract
Natural disasters and emergencies continue to increase in frequency and severity worldwide, necessitating robust emergency management (EM) systems and evaluation methodologies. This study addresses critical gaps in current emergency response capacity (ERC) evaluation frameworks by developing a comprehensive quantitative decision-making model to assess ERC more effectively. This research constructs a systematic ERC assessment framework based on the four phases of the disaster management cycle (DMC): prevention, preparedness, response, and recovery. The methodology employs multi-criteria decision analysis to evaluate ERC using three distinct information representation environments: intuitionistic fuzzy (IF) sets, linguistic variables (LV), and a novel mixed IF-LV environment. For each environment, we derive appropriate aggregation operators, weight determination methods, and information fusion mechanisms. The proposed model was empirically validated through a case application to emergency plan selection in Shenzhen, China. A statistical analysis of results demonstrates high consistency across all three decision environments (IF, LV, and mixed IF-LV), confirming the model’s robustness and reliability. A sensitivity analysis of key parameters further validates the model’s stability. Results indicate that the proposed decision-making approach provides significant value for EM by enabling more objective, comprehensive, and flexible ERC assessment. The indicator system and evaluation methodology offer decision-makers (DMs) tools to quantitatively analyze ERC using various information expressions, accommodating both subjective judgments and objective metrics. This framework represents an important advancement in emergency preparedness assessment, supporting more informed decision-making in emergency planning and response capabilities.
Suggested Citation
Guanyu Chen & Tao Li & Liguo Fei, 2025.
"A Decision-Making Model for the Assessment of Emergency Response Capacity in China,"
Mathematics, MDPI, vol. 13(11), pages 1-24, May.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:11:p:1772-:d:1664897
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1772-:d:1664897. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.