IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i7p7868-7885d52396.html
   My bibliography  Save this article

Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

Author

Listed:
  • Weili Duan

    (Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

  • Bin He

    (Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract

In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

Suggested Citation

  • Weili Duan & Bin He, 2015. "Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China," IJERPH, MDPI, vol. 12(7), pages 1-18, July.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:7:p:7868-7885:d:52396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/7/7868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/7/7868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicola Paltrinieri & Nicolas Dechy & Ernesto Salzano & Mike Wardman & Valerio Cozzani, 2012. "Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1404-1419, August.
    2. Michela Campedel & Valerio Cozzani & Anita Garcia‐Agreda & Ernesto Salzano, 2008. "Extending the Quantitative Assessment of Industrial Risks to Earthquake Effects," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1231-1246, October.
    3. Salzano, Ernesto & Cozzani, Valerio, 2005. "The analysis of domino accidents triggered by vapor cloud explosions," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 271-284.
    4. Hsinchun Chen, 2005. "Introduction to the special topic issue: Intelligence and security informatics," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(3), pages 217-220, February.
    5. Ernesto Salzano & Anna Basco & Valentina Busini & Valerio Cozzani & Enrico Marzo & Renato Rota & Gigliola Spadoni, 2013. "Public awareness promoting new or emerging risks: Industrial accidents triggered by natural hazards (NaTech)," Journal of Risk Research, Taylor & Francis Journals, vol. 16(3-4), pages 469-485, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao-Wen Qi & Jun-Ling Zhang & Shu-Ping Zhao & Chang-Yong Liang, 2017. "Tackling Complex Emergency Response Solutions Evaluation Problems in Sustainable Development by Fuzzy Group Decision Making Approaches with Considering Decision Hesitancy and Prioritization among Asse," IJERPH, MDPI, vol. 14(10), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Olivar, Oscar J. Ramírez & Mayorga, Santiago Zuluaga & Giraldo, Felipe Muñoz & Sánchez-Silva, Mauricio & Pinelli, Jean-Paul & Salzano, Ernesto, 2020. "The effects of extreme winds on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Daniele Giordan & Martina Cignetti & Danilo Godone & Davide Bertolo & Marco Paganone, 2021. "Definition of an Operative Methodology for the Management of Rockfalls along with the Road Network," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    6. Lanzano, Giovanni & Salzano, Ernesto & de Magistris, Filippo Santucci & Fabbrocino, Giovanni, 2013. "Seismic vulnerability of natural gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 73-80.
    7. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    9. Rohit Valecha, 2020. "An Investigation of Interaction Patterns in Emergency Management: A Case Study of The Crash of Continental Flight 3407," Information Systems Frontiers, Springer, vol. 22(4), pages 897-909, August.
    10. IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.
    12. Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio & Salzano, Ernesto, 2015. "Vulnerability of industrial facilities to attacks with improvised explosive devices aimed at triggering domino scenarios," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 53-62.
    13. Jianfeng Zhou & Genserik Reniers, 2020. "Probabilistic Analysis of Domino Effects by Using a Matrix‐Based Simulation Approach," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1913-1927, October.
    14. Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Marzo, E. & Busini, V. & Rota, R., 2015. "Definition of a short-cut methodology for assessing the vulnerability of a territory in natural–technological risk estimation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 92-97.
    16. Li Zeng & Changjun Fan & Chao Chen, 2023. "Leveraging Minimum Nodes for Optimum Key Player Identification in Complex Networks: A Deep Reinforcement Learning Strategy with Structured Reward Shaping," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    17. Celano, Francesca & Dolšek, Matjaž, 2021. "Fatality risk estimation for industrialized urban areas considering multi-hazard domino effects triggered by earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    18. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
    19. Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    20. Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:7:p:7868-7885:d:52396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.