IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i11p1739-d1663635.html
   My bibliography  Save this article

A Meta-Learning Approach for Estimating Heterogeneous Treatment Effects Under Hölder Continuity

Author

Listed:
  • Zhihao Zhao

    (School of Statistics, Capital University of Economics and Business, Beijing 100070, China)

  • Congyang Zhou

    (School of Statistics, Capital University of Economics and Business, Beijing 100070, China)

Abstract

Estimating heterogeneous treatment effects plays a vital role in many statistical applications, such as precision medicine and precision marketing. In this paper, we propose a novel meta-learner, termed RXlearner for estimating the conditional average treatment effect (CATE) within the general framework of meta-algorithms. RXlearner enhances the weighting mechanism of the traditional Xlearner to improve estimation accuracy. We establish non-asymptotic error bounds for RXlearner under a continuity classification criterion, specifically assuming that the response function satisfies Hölder continuity. Moreover, we show that these bounds are achievable by selecting an appropriate base learner. The effectiveness of the proposed method is validated through extensive simulation studies and a real-world data experiment.

Suggested Citation

  • Zhihao Zhao & Congyang Zhou, 2025. "A Meta-Learning Approach for Estimating Heterogeneous Treatment Effects Under Hölder Continuity," Mathematics, MDPI, vol. 13(11), pages 1-25, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1739-:d:1663635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/11/1739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/11/1739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    4. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    2. Dongcheng Zhang & Kunpeng Zhang, 2020. "Weighting-Based Treatment Effect Estimation via Distribution Learning," Papers 2012.13805, arXiv.org, revised May 2023.
    3. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    4. Hugo Bodory & Martin Huber & Michael Lechner, 2024. "The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
    5. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    6. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    7. Masahiro Kato, 2021. "Adaptive Doubly Robust Estimator from Non-stationary Logging Policy under a Convergence of Average Probability," Papers 2102.08975, arXiv.org, revised Mar 2021.
    8. Phillip Heiler, 2022. "Efficient Covariate Balancing for the Local Average Treatment Effect," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1569-1582, October.
    9. Guido Imbens & Yiqing Xu, 2024. "Comparing Experimental and Nonexperimental Methods: What Lessons Have We Learned Four Decades After LaLonde (1986)?," Papers 2406.00827, arXiv.org, revised May 2025.
    10. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    11. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    12. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    13. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    14. Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023. "Criminal charges, risk assessment and violent recidivism in cases of domestic abuse," LSE Research Online Documents on Economics 121374, London School of Economics and Political Science, LSE Library.
    15. Masahiro Kato & Kenshi Abe & Kaito Ariu & Shota Yasui, 2020. "A Practical Guide of Off-Policy Evaluation for Bandit Problems," Papers 2010.12470, arXiv.org.
    16. Svejnar, Jan & Hagemejer, Jan & Tyrowicz, Joanna, 2018. "Are Rushed Privatizations Substandard? Analyzing Firm-level Privatization under Fiscal Pressure," CEPR Discussion Papers 12991, C.E.P.R. Discussion Papers.
    17. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    18. Dingke Tang & Dehan Kong & Wenliang Pan & Linbo Wang, 2023. "Ultra‐high dimensional variable selection for doubly robust causal inference," Biometrics, The International Biometric Society, vol. 79(2), pages 903-914, June.
    19. Neng-Chieh Chang, 2020. "The Mode Treatment Effect," Papers 2007.11606, arXiv.org.
    20. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1739-:d:1663635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.