IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i10p1659-d1659090.html
   My bibliography  Save this article

Integrating Copula-Based Random Forest and Deep Learning Approaches for Analyzing Heterogeneous Treatment Effects in Survival Analysis

Author

Listed:
  • Jong-Min Kim

    (Statistics Discipline, Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN 56267, USA)

Abstract

This paper presents deep learning models—specifically, Long Short-Term Memory (LSTM) networks and hybrid Convolutional Neural Network–LSTM (CNN-LSTM) with a Copula-Based Random Forest (CBRF) model to estimate Heterogeneous Treatment Effects (HTEs) in survival analysis. The proposed method is designed to capture non-linear relationships and temporal dependencies in clinical and genomic data, with a particular focus on exploring how treatment effects vary by race as a moderating factor. Using breast cancer data from the TCGA-BRCA dataset, which includes both clinical variables and gene expression profiles, we filter the data to focus on two racial groups: Black or African American and White. Dimensionality reduction is performed using Principal Component Analysis (PCA). We compare the CNN-LSTM, LSTM, and CBRF models under three weighting strategies—no weights, Horvitz–Thompson (HT) weights, and Inverse Probability of Treatment Weighting (IPTW)—for predicting treatment effects. Model performance is evaluated using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Concordance statistic (C-statistic), Average Treatment Effect (ATE), and Conditional Average Treatment Effect (CATE) by race. The CNN-LSTM model consistently outperforms the others, achieving the lowest prediction errors and highest discrimination, particularly under IPTW. Among the weighting strategies, IPTW yields the most substantial improvements in model performance and bias reduction. Importantly, race-specific treatment effects exhibit notable variation: CNN-LSTM estimates a slightly higher CATE for Black individuals under IPTW. Overall, CNN-LSTM with IPTW is recommended for robust and equitable causal inference, especially in racially stratified settings.

Suggested Citation

  • Jong-Min Kim, 2025. "Integrating Copula-Based Random Forest and Deep Learning Approaches for Analyzing Heterogeneous Treatment Effects in Survival Analysis," Mathematics, MDPI, vol. 13(10), pages 1-29, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1659-:d:1659090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/10/1659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/10/1659/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1659-:d:1659090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.