IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1433-d1098649.html
   My bibliography  Save this article

An Iterated Population-Based Metaheuristic for Order Acceptance and Scheduling in Unrelated Parallel Machines with Several Practical Constraints

Author

Listed:
  • Chun-Lung Chen

    (Department of Accounting Information, Takming University of Science and Technology, Taipei 11451, Taiwan)

Abstract

This study considers order acceptance and scheduling problems in unrelated parallel machines with several practical constraints, including order release times, sequence-dependent setup times, machines’ unequal ready times, and preventive maintenance. In a make-to-order production environment, issues with order acceptance and scheduling are mainly caused by the limited production capacity of a factory, which makes it impossible to accept all orders. Consequently, some orders must be rejected in order to maximize profits and the accepted orders must be completed by the due date or no later than the deadline. An iterated population-based metaheuristic is proposed to solve the problems. The algorithm begins with an efficient initial solution generator to generate an initial solution, and then uses the destruction and construction procedure to generate a population with multiple solutions. Then, a solution is selected from the population, and a variable neighborhood descent search algorithm with several new reduced-size neighborhood structures is applied to improve the selected solution. Following the completion of the local search, a method for updating the members of the population was devised to enhance its diversity. Finally, the metaheuristic allows the populations to evolve for several generations until the termination condition is satisfied. To evaluate the performance of the proposed metaheuristic, a heuristic rule and an iterated local search algorithm are examined and compared. The computational experimental results indicate that the presented metaheuristic outperforms the other heuristics.

Suggested Citation

  • Chun-Lung Chen, 2023. "An Iterated Population-Based Metaheuristic for Order Acceptance and Scheduling in Unrelated Parallel Machines with Several Practical Constraints," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1433-:d:1098649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maximilian Moser & Nysret Musliu & Andrea Schaerf & Felix Winter, 2022. "Exact and metaheuristic approaches for unrelated parallel machine scheduling," Journal of Scheduling, Springer, vol. 25(5), pages 507-534, October.
    2. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    3. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    4. Liqi Zhang & Lingfa Lu, 2016. "Parallel-machine scheduling with release dates and rejection," 4OR, Springer, vol. 14(2), pages 165-172, June.
    5. Hanane Krim & Nicolas Zufferey & Jean-Yves Potvin & Rachid Benmansour & David Duvivier, 2022. "Tabu search for a parallel-machine scheduling problem with periodic maintenance, job rejection and weighted sum of completion times," Journal of Scheduling, Springer, vol. 25(1), pages 89-105, February.
    6. Jinwen Ou & Xueling Zhong, 2017. "Order acceptance and scheduling with consideration of service level," Annals of Operations Research, Springer, vol. 248(1), pages 429-447, January.
    7. Xiuli Wang & Guodong Huang & Xiuwu Hu & T C Edwin Cheng, 2015. "Order acceptance and scheduling on two identical parallel machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(10), pages 1755-1767, October.
    8. Xueling Zhong & Jinwen Ou, 2017. "Improved approximation algorithms for parallel machine scheduling with release dates and job rejection," 4OR, Springer, vol. 15(4), pages 387-406, December.
    9. Naderi, Bahman & Roshanaei, Vahid, 2020. "Branch-Relax-and-Check: A tractable decomposition method for order acceptance and identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 286(3), pages 811-827.
    10. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    11. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    12. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    2. Li, Weidong & Ou, Jinwen, 2024. "Machine scheduling with restricted rejection: An Application to task offloading in cloud–edge collaborative computing," European Journal of Operational Research, Elsevier, vol. 314(3), pages 912-919.
    3. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.
    4. Xiaofei Liu & Weidong Li & Yaoyu Zhu, 2021. "Single Machine Vector Scheduling with General Penalties," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    5. Perea, Federico & Yepes-Borrero, Juan C. & Menezes, Mozart B.C., 2023. "Acceptance Ordering Scheduling Problem: The impact of an order-portfolio on a make-to-order firm’s profitability," International Journal of Production Economics, Elsevier, vol. 264(C).
    6. Hanane Krim & Nicolas Zufferey & Jean-Yves Potvin & Rachid Benmansour & David Duvivier, 2022. "Tabu search for a parallel-machine scheduling problem with periodic maintenance, job rejection and weighted sum of completion times," Journal of Scheduling, Springer, vol. 25(1), pages 89-105, February.
    7. Zhong, Xueling & Fan, Jie & Ou, Jinwen, 2022. "Coordinated scheduling of the outsourcing, in-house production and distribution operations," European Journal of Operational Research, Elsevier, vol. 302(2), pages 427-437.
    8. Peihai Liu & Xiwen Lu, 2020. "New approximation algorithms for machine scheduling with rejection on single and parallel machine," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 929-952, November.
    9. Mohamadreza Dabiri & Mehdi Yazdani & Bahman Naderi & Hassan Haleh, 2022. "Modeling and solution methods for hybrid flow shop scheduling problem with job rejection," Operational Research, Springer, vol. 22(3), pages 2721-2765, July.
    10. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    11. Wang, Xiuli & Zhu, Qianqian & Cheng, T.C.E., 2015. "Subcontracting price schemes for order acceptance and scheduling," Omega, Elsevier, vol. 54(C), pages 1-10.
    12. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    13. Ou, Jinwen & Zhong, Xueling, 2017. "Bicriteria order acceptance and scheduling with consideration of fill rate," European Journal of Operational Research, Elsevier, vol. 262(3), pages 904-907.
    14. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    15. Lingfa Lu & Liqi Zhang & Jinwen Ou, 2021. "In-house production and outsourcing under different discount schemes on the total outsourcing cost," Annals of Operations Research, Springer, vol. 298(1), pages 361-374, March.
    16. Alberto Santini & Stefan Ropke & Lars Magnus Hvattum, 2018. "A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic," Journal of Heuristics, Springer, vol. 24(5), pages 783-815, October.
    17. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
    18. Wang, Xiuli & Geng, Sujie & Cheng, T.C.E., 2018. "Negotiation mechanisms for an order subcontracting and scheduling problem," Omega, Elsevier, vol. 77(C), pages 154-167.
    19. Jinwen Ou & Xueling Zhong & Xiangtong Qi, 2016. "Scheduling parallel machines with inclusive processing set restrictions and job rejection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 667-681, December.
    20. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1433-:d:1098649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.