IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v248y2017i1d10.1007_s10479-016-2277-2.html
   My bibliography  Save this article

Order acceptance and scheduling with consideration of service level

Author

Listed:
  • Jinwen Ou

    (Jinan University)

  • Xueling Zhong

    (Guangdong University of Finance)

Abstract

In traditional order acceptance and scheduling (OAS) research, there is no constraint on how many orders are allowed to be rejected in total. We study OAS with consideration of service level in this paper. In our OAS model, there are n orders and m machines available at time zero. To maintain a predefined high service level, the number of orders to be rejected is limited to be no greater than a given value k. The objective is to minimize the completion time of the last accepted order plus the total penalty of all rejected orders. The problem is NP-hard in the strong sense in general. For the special case with a single machine (i.e., when $$m=1$$ m = 1 ), we present an exact algorithm with a complexity of $$O(n\log k)$$ O ( n log k ) . For the general case, we first propose an $$O(n\log n)$$ O ( n log n ) heuristic with a worst-case bound of $$2-\frac{1}{m}$$ 2 - 1 m , followed by a sophisticated heuristic by making use of LP-relaxation and bin-packing techniques. The second heuristic has a worst-case bound of $$1.5+\epsilon $$ 1.5 + ϵ and a time complexity of $$O(n\log n + nm^2/\epsilon )$$ O ( n log n + n m 2 / ϵ ) , where $$\epsilon >0$$ ϵ > 0 can be any small given constant.

Suggested Citation

  • Jinwen Ou & Xueling Zhong, 2017. "Order acceptance and scheduling with consideration of service level," Annals of Operations Research, Springer, vol. 248(1), pages 429-447, January.
  • Handle: RePEc:spr:annopr:v:248:y:2017:i:1:d:10.1007_s10479-016-2277-2
    DOI: 10.1007/s10479-016-2277-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2277-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2277-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caprara, Alberto & Kellerer, Hans & Pferschy, Ulrich & Pisinger, David, 2000. "Approximation algorithms for knapsack problems with cardinality constraints," European Journal of Operational Research, Elsevier, vol. 123(2), pages 333-345, June.
    2. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    3. repec:spr:pharme:v:21:y:2003:i:12:p:839-851 is not listed on IDEAS
    4. Lee, Ik Sun & Sung, C.S., 2008. "Minimizing due date related measures for a single machine scheduling problem with outsourcing allowed," European Journal of Operational Research, Elsevier, vol. 186(3), pages 931-952, May.
    5. Zhang, Liqi & Lu, Lingfa & Yuan, Jinjiang, 2009. "Single machine scheduling with release dates and rejection," European Journal of Operational Research, Elsevier, vol. 198(3), pages 975-978, November.
    6. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    7. Lee, Ik Sun & Sung, C.S., 2008. "Single machine scheduling with outsourcing allowed," International Journal of Production Economics, Elsevier, vol. 111(2), pages 623-634, February.
    8. Cheng, Yushao & Sun, Shijie, 2009. "Scheduling linear deteriorating jobs with rejection on a single machine," European Journal of Operational Research, Elsevier, vol. 194(1), pages 18-27, April.
    9. Zhong, Xueling & Ou, Jinwen & Wang, Guoqing, 2014. "Order acceptance and scheduling with machine availability constraints," European Journal of Operational Research, Elsevier, vol. 232(3), pages 435-441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun-Lung Chen, 2023. "An Iterated Population-Based Metaheuristic for Order Acceptance and Scheduling in Unrelated Parallel Machines with Several Practical Constraints," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    2. Ou, Jinwen & Zhong, Xueling, 2017. "Bicriteria order acceptance and scheduling with consideration of fill rate," European Journal of Operational Research, Elsevier, vol. 262(3), pages 904-907.
    3. Jinwen Ou, 2020. "Near-linear-time approximation algorithms for scheduling a batch-processing machine with setups and job rejection," Journal of Scheduling, Springer, vol. 23(5), pages 525-538, October.
    4. Qi Feng & Shisheng Li, 2022. "Algorithms for Multi-Customer Scheduling with Outsourcing," Mathematics, MDPI, vol. 10(9), pages 1-12, May.
    5. Mohamadreza Dabiri & Mehdi Yazdani & Bahman Naderi & Hassan Haleh, 2022. "Modeling and solution methods for hybrid flow shop scheduling problem with job rejection," Operational Research, Springer, vol. 22(3), pages 2721-2765, July.
    6. Hanane Krim & Nicolas Zufferey & Jean-Yves Potvin & Rachid Benmansour & David Duvivier, 2022. "Tabu search for a parallel-machine scheduling problem with periodic maintenance, job rejection and weighted sum of completion times," Journal of Scheduling, Springer, vol. 25(1), pages 89-105, February.
    7. Lingfa Lu & Liqi Zhang & Jinwen Ou, 2021. "In-house production and outsourcing under different discount schemes on the total outsourcing cost," Annals of Operations Research, Springer, vol. 298(1), pages 361-374, March.
    8. Wenchang Luo & Rylan Chin & Alexander Cai & Guohui Lin & Bing Su & An Zhang, 2022. "A tardiness-augmented approximation scheme for rejection-allowed multiprocessor rescheduling," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 690-722, August.
    9. Xiaofei Liu & Weidong Li & Yaoyu Zhu, 2021. "Single Machine Vector Scheduling with General Penalties," Mathematics, MDPI, vol. 9(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ou, Jinwen & Zhong, Xueling & Wang, Guoqing, 2015. "An improved heuristic for parallel machine scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 241(3), pages 653-661.
    2. Zhong, Xueling & Ou, Jinwen & Wang, Guoqing, 2014. "Order acceptance and scheduling with machine availability constraints," European Journal of Operational Research, Elsevier, vol. 232(3), pages 435-441.
    3. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    4. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.
    5. Lingfa Lu & Liqi Zhang & Jinwen Ou, 2021. "In-house production and outsourcing under different discount schemes on the total outsourcing cost," Annals of Operations Research, Springer, vol. 298(1), pages 361-374, March.
    6. Xueling Zhong & Zhangming Pan & Dakui Jiang, 2017. "Scheduling with release times and rejection on two parallel machines," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 934-944, April.
    7. Xin Li & José A. Ventura & Kevin A. Bunn, 2021. "A joint order acceptance and scheduling problem with earliness and tardiness penalties considering overtime," Journal of Scheduling, Springer, vol. 24(1), pages 49-68, February.
    8. Li, Xin & Ventura, Jose A., 2020. "Exact algorithms for a joint order acceptance and scheduling problem," International Journal of Production Economics, Elsevier, vol. 223(C).
    9. Lu, Lingfa & Ng, C.T. & Zhang, Liqi, 2011. "Optimal algorithms for single-machine scheduling with rejection to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 130(2), pages 153-158, April.
    10. Zhong, Xueling & Fan, Jie & Ou, Jinwen, 2022. "Coordinated scheduling of the outsourcing, in-house production and distribution operations," European Journal of Operational Research, Elsevier, vol. 302(2), pages 427-437.
    11. Xiao, Yiyong & Yuan, Yingying & Zhang, Ren-Qian & Konak, Abdullah, 2015. "Non-permutation flow shop scheduling with order acceptance and weighted tardiness," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 312-333.
    12. Peihai Liu & Xiwen Lu, 2020. "New approximation algorithms for machine scheduling with rejection on single and parallel machine," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 929-952, November.
    13. Simon Thevenin & Nicolas Zufferey & Rémy Glardon, 2017. "Model and metaheuristics for a scheduling problem integrating procurement, sale and distribution decisions," Annals of Operations Research, Springer, vol. 259(1), pages 437-460, December.
    14. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
    15. Liu, Zhixin & Lu, Liang & Qi, Xiangtong, 2020. "Price quotation for orders with different due dates," International Journal of Production Economics, Elsevier, vol. 220(C).
    16. Wang, Xiuli & Cheng, T.C.E., 2015. "A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint," International Journal of Production Economics, Elsevier, vol. 161(C), pages 74-82.
    17. Wang, Xiuli & Zhu, Qianqian & Cheng, T.C.E., 2015. "Subcontracting price schemes for order acceptance and scheduling," Omega, Elsevier, vol. 54(C), pages 1-10.
    18. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "Order acceptance and scheduling in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 141(1), pages 366-376.
    19. Belleh Fontem & Megan Price, 2021. "Joint client selection and contract design for a risk-averse commodity broker in a two-echelon supply chain," Annals of Operations Research, Springer, vol. 307(1), pages 111-138, December.
    20. Simon Thevenin & Nicolas Zufferey & Marino Widmer, 2016. "Order acceptance and scheduling with earliness and tardiness penalties," Journal of Heuristics, Springer, vol. 22(6), pages 849-890, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:248:y:2017:i:1:d:10.1007_s10479-016-2277-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.