IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1317-d1091925.html
   My bibliography  Save this article

Scalar Variance and Scalar Correlation for Functional Data

Author

Listed:
  • Cristhian Leonardo Urbano-Leon

    (Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Manuel Escabias

    (Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Diana Paola Ovalle-Muñoz

    (Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Javier Olaya-Ochoa

    (School of Statistics, University of Valle, Cali 760042, Colombia
    These authors contributed equally to this work.)

Abstract

In Functional Data Analysis (FDA), the existing summary statistics so far are elements in the Hilbert space L 2 of square-integrable functions. These elements do not constitute an ordered set; therefore, they are not sufficient to solve problems related to comparability such as obtaining a correlation measurement or comparing the variability between two sets of curves, determining the efficiency and consistency of a functional estimator, among other things. Consequently, we present an approach of coherent redefinition of some common summary statistics such as sample variance, sample covariance and correlation in Functional Data Analysis (FDA). Regarding variance, covariance and correlation between functional data, our summary statistics lead to numbers instead of functions which is helpful for solving the aforementioned problems. Furthermore, we briefly discuss the functional forms coherence of some statistics already present in the FDA. We formally enumerate and demonstrate some properties of our functional summary statistics. Then, a simulation study is presented briefly, with evidence of the consistency of the proposed variance. Finally, we present the implementation of our statistics through two application examples.

Suggested Citation

  • Cristhian Leonardo Urbano-Leon & Manuel Escabias & Diana Paola Ovalle-Muñoz & Javier Olaya-Ochoa, 2023. "Scalar Variance and Scalar Correlation for Functional Data," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1317-:d:1091925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Th. Gasser & P. Hall & B. Presnell, 1998. "Nonparametric estimation of the mode of a distribution of random curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 681-691.
    2. Aguilera, Ana M. & Acal, Christian & Aguilera-Morillo, M. Carmen & Jiménez-Molinos, Francisco & Roldán, Juan B., 2021. "Homogeneity problem for basis expansion of functional data with applications to resistive memories," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 41-51.
    3. J. Ramsay, 1982. "When the data are functions," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 379-396, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urbano-Leon, Cristhian Leonardo & Aguilera, Ana María & Escabias, Manuel, 2024. "Repeated measures in functional logistic regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 66-77.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laib, Naâmane & Louani, Djamal, 2010. "Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2266-2281, November.
    2. Andrea Meilán-Vila & Rosa M. Crujeiras & Mario Francisco-Fernández, 2024. "Nonparametric estimation for a functional-circular regression model," Statistical Papers, Springer, vol. 65(2), pages 945-974, April.
    3. Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
    4. Jianping Zhu & Futian Weng & Muni Zhuang & Xin Lu & Xu Tan & Songjie Lin & Ruoyi Zhang, 2022. "Revealing Public Opinion towards the COVID-19 Vaccine with Weibo Data in China: BertFDA-Based Model," IJERPH, MDPI, vol. 19(20), pages 1-26, October.
    5. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    6. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    7. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    8. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    9. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    10. Ismail Shah & Naveed Gul & Sajid Ali & Hassan Houmani, 2024. "Short-Term Hourly Ozone Concentration Forecasting Using Functional Data Approach," Econometrics, MDPI, vol. 12(2), pages 1-21, May.
    11. Frédéric Ferraty & Nadia Kudraszow & Philippe Vieu, 2012. "Nonparametric estimation of a surrogate density function in infinite-dimensional spaces," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 447-464.
    12. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    13. Boudreault, Jeremie & Bergeron, Normand E & St-Hilaire, Andre & Chebana, Fateh, 2022. "A new look at habitat suitability curves through functional data analysis," Ecological Modelling, Elsevier, vol. 467(C).
    14. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    15. Aubin, Jean-Baptiste & Bongiorno, Enea G. & Goia, Aldo, 2022. "The correction term in a small-ball probability factorization for random curves," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Angel Calderon-Madrid & Alexandru Voicu, 2011. "The NAFTA tide: Lifting the larger and better boats," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 20(4), pages 467-505.
    17. Boente, Graciela & Fraiman, Ricardo, 2000. "Kernel-based functional principal components," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 335-345, July.
    18. James Cameron & Pramita Bagchi, 2022. "A test for heteroscedasticity in functional linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 519-542, June.
    19. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    20. Jakub Poręba & Jerzy Baranowski, 2022. "Functional Logistic Regression for Motor Fault Classification Using Acoustic Data in Frequency Domain," Energies, MDPI, vol. 15(15), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1317-:d:1091925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.