IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3933-d1241018.html
   My bibliography  Save this article

Six-Segment Strategy for Prosumers’ Financial Benefit Maximization in Local Peer-to-Peer Energy Trading

Author

Listed:
  • Pratik Mochi

    (Department of Electrical Engineering, Chandubhai S Patel Institute of Technology (CSPIT), Charotar University of Science and Technology, CHARUSAT Campus, Changa 388421, Gujarat, India)

  • Kartik Pandya

    (Electrical Engineering Department, Parul Institute of Engineering & Technology, Faculty of Engineering & Technology, Parul University, Vadodara 391760, Gujarat, India)

  • Ricardo Faia

    (LASI—Intelligent Systems Associate Laboratory, GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, School of Engineering (ISEP)—Polytechnic of Porto, 4200-072 Porto, Portugal)

  • Joao Soares

    (LASI—Intelligent Systems Associate Laboratory, GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, School of Engineering (ISEP)—Polytechnic of Porto, 4200-072 Porto, Portugal)

Abstract

The notion of prosumers, people who create and consume energy, has emerged in the energy sector as a result of the fast integration of renewable energy sources and advances in digital technology. Platforms for peer-to-peer (P2P) energy trading have come to light as viable ways to allow prosumers to conduct direct energy transactions within small groups. Existing P2P trading models, however, frequently lack an optimized approach to maximize the advantages for prosumers. In this article, we provide a novel six-segment strategy (SSS) that is intended to increase prosumers′ ability to maximize their benefits in P2P energy trading systems. Additionally, the SSS promotes prosumers′ active market engagement by supporting community-driven energy exchanges. Through extensive mathematical modeling, simulations, and case studies, we demonstrate the effectiveness of the six-segment strategy in enhancing the economic benefits of prosumers participating in P2P energy trading. The proposed optimization strategy holds the potential to revolutionize the energy landscape by promoting more sustainable and consumer-centric energy trading. The cost savings of 12.9% are distributed among prosumers by the SSS, which is an improvement compared with previously proposed strategies.

Suggested Citation

  • Pratik Mochi & Kartik Pandya & Ricardo Faia & Joao Soares, 2023. "Six-Segment Strategy for Prosumers’ Financial Benefit Maximization in Local Peer-to-Peer Energy Trading," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3933-:d:1241018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hampton, Harrison & Foley, Aoife M. & Del Rio, Dylan Furszyfer & Sovacool, Benjamin, 2022. "Developing future retail electricity markets with a customer-centric focus," Energy Policy, Elsevier, vol. 168(C).
    2. Duvignau, Romaric & Heinisch, Verena & Göransson, Lisa & Gulisano, Vincenzo & Papatriantafilou, Marina, 2021. "Benefits of small-size communities for continuous cost-optimization in peer-to-peer energy sharing," Applied Energy, Elsevier, vol. 301(C).
    3. Bogdan-Constantin Neagu & Ovidiu Ivanov & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A New Vision on the Prosumers Energy Surplus Trading Considering Smart Peer-to-Peer Contracts," Mathematics, MDPI, vol. 8(2), pages 1-27, February.
    4. Koengkan, Matheus & Fuinhas, José Alberto & Osmani, Fariba & Kazemzadeh, Emad & Auza, Anna & Alavijeh, Nooshin Karimi & Teixeira, Mônica, 2022. "Do financial and fiscal incentive policies increase the energy efficiency ratings in residential properties? A piece of empirical evidence from Portugal," Energy, Elsevier, vol. 241(C).
    5. Dynge, Marthe Fogstad & Berg, Kjersti & Bjarghov, Sigurd & Cali, Ümit, 2023. "Local electricity market pricing mechanisms’ impact on welfare distribution, privacy and transparency," Applied Energy, Elsevier, vol. 341(C).
    6. Shinji Kuno & Kenji Tanaka & Yuji Yamada, 2022. "Effectiveness and Feasibility of Market Makers for P2P Electricity Trading," Energies, MDPI, vol. 15(12), pages 1-24, June.
    7. Rohit Trivedi & Sandipan Patra & Yousra Sidqi & Benjamin Bowler & Fiona Zimmermann & Geert Deconinck & Antonios Papaemmanouil & Shafi Khadem, 2022. "Community-Based Microgrids: Literature Review and Pathways to Decarbonise the Local Electricity Network," Energies, MDPI, vol. 15(3), pages 1-30, January.
    8. Iria, José & Soares, Filipe, 2019. "Real-time provision of multiple electricity market products by an aggregator of prosumers," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seong-Hyeon Cha & Sun-Hyeok Kwak & Woong Ko, 2023. "A Robust Optimization Model of Aggregated Resources Considering Serving Ratio for Providing Reserve Power in the Joint Electricity Market," Energies, MDPI, vol. 16(20), pages 1-27, October.
    2. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    3. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    4. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    5. Retière, N. & Sidqi, Y. & Frankhauser, P., 2022. "A steady-state analysis of distribution networks by diffusion-limited-aggregation and multifractal geometry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Cerna, Fernando V. & Pourakbari-Kasmaei, Mahdi & Barros, Raone G. & Naderi, Ehsan & Lehtonen, Matti & Contreras, Javier, 2023. "Optimal operating scheme of neighborhood energy storage communities to improve power grid performance in smart cities," Applied Energy, Elsevier, vol. 331(C).
    7. Sun, Bo & Li, Mingzhe & Wang, Fan & Xie, Jingdong, 2023. "An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: A two-level Stackelberg game approach," Energy, Elsevier, vol. 269(C).
    8. Matheus Koengkan & José Alberto Fuinhas & Magdalena Radulescu & Emad Kazemzadeh & Nooshin Karimi Alavijeh & Renato Santiago & Mônica Teixeira, 2023. "Assessing the Role of Financial Incentives in Promoting Eco-Friendly Houses in the Lisbon Metropolitan Area—Portugal," Energies, MDPI, vol. 16(4), pages 1-20, February.
    9. Peter Klement & Tobias Brandt & Lucas Schmeling & Antonieta Alcorta de Bronstein & Steffen Wehkamp & Fernando Andres Penaherrera Vaca & Mathias Lanezki & Patrik Schönfeldt & Alexander Hill & Nemanja K, 2022. "Local Energy Markets in Action: Smart Integration of National Markets, Distributed Energy Resources and Incentivisation to Promote Citizen Participation," Energies, MDPI, vol. 15(8), pages 1-24, April.
    10. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    11. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    13. Matheus Koengkan & Nuno Silva & José Alberto Fuinhas, 2023. "Assessing Energy Performance Certificates for Buildings: A Fuzzy Set Qualitative Comparative Analysis (fsQCA) of Portuguese Municipalities," Energies, MDPI, vol. 16(7), pages 1-30, April.
    14. Cui, Shiting & Wu, Jun & Gao, Yao & Zhu, Ruijin, 2023. "A high altitude prosumer energy cooperation framework considering composite energy storage sharing and electric‑oxygen‑hydrogen flexible supply," Applied Energy, Elsevier, vol. 349(C).
    15. Iria, José & Scott, Paul & Attarha, Ahmad, 2020. "Network-constrained bidding optimization strategy for aggregators of prosumers," Energy, Elsevier, vol. 207(C).
    16. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
    17. Chi-Keung Woo & Jay Zarnikau & Asher Tishler & Kang Hua Cao, 2022. "Insuring a Small Retail Electric Provider’s Procurement Cost Risk in Texas," Energies, MDPI, vol. 16(1), pages 1-12, December.
    18. Singh, Kamini & Gadh, Rajit & Singh, Anoop & Lal Dewangan, Chaman, 2022. "Design of an optimal P2P energy trading market model using bilevel stochastic optimization," Applied Energy, Elsevier, vol. 328(C).
    19. Wang, Yi & Yang, Zhifang & Yu, Juan & Liu, Junyong, 2023. "An optimization-based partial marginal pricing method to reduce excessive consumer payment in electricity markets," Applied Energy, Elsevier, vol. 352(C).
    20. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3933-:d:1241018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.