IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3627-d1222545.html
   My bibliography  Save this article

Flexible-Elliptical Spatial Scan Method

Author

Listed:
  • Mohammad Meysami

    (Department of Mathematics, Clarkson University, Potsdam, NY 13699, USA)

  • Joshua P. French

    (Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA)

  • Ettie M. Lipner

    (National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA)

Abstract

The detection of disease clusters in spatial data analysis plays a crucial role in public health, while the circular scan method is widely utilized for this purpose, accurately identifying non-circular (irregular) clusters remains challenging and reduces detection accuracy. To overcome this limitation, various extensions have been proposed to effectively detect arbitrarily shaped clusters. In this paper, we combine the strengths of two well-known methods, the flexible and elliptic scan methods, which are specifically designed for detecting irregularly shaped clusters. We leverage the unique characteristics of these methods to create candidate zones capable of accurately detecting irregularly shaped clusters, along with a modified likelihood ratio test statistic. By inheriting the advantages of the flexible and elliptic methods, our proposed approach represents a practical addition to the existing repertoire of spatial data analysis techniques.

Suggested Citation

  • Mohammad Meysami & Joshua P. French & Ettie M. Lipner, 2023. "Flexible-Elliptical Spatial Scan Method," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3627-:d:1222545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kulldorff, Martin & Tango, Toshiro & Park, Peter J., 2003. "Power comparisons for disease clustering tests," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 665-684, April.
    2. Julian Besag & James Newell, 1991. "The Detection of Clusters in Rare Diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(1), pages 143-155, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Wan, You & Pei, Tao & Zhou, Chenghu & Jiang, Yong & Qu, Chenxu & Qiao, Youlin, 2012. "ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 283-296.
    3. Silva, Ivair R. & Duczmal, Luiz & Kulldorff, Martin, 2021. "Confidence intervals for spatial scan statistic," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    4. Costa, Marcelo Azevedo & Assunção, Renato Martins & Kulldorff, Martin, 2012. "Constrained spanning tree algorithms for irregularly-shaped spatial clustering," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1771-1783.
    5. Porter, Michael D. & Brown, Donald E., 2007. "Detecting local regions of change in high-dimensional criminal or terrorist point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2753-2768, February.
    6. Demattei[diaeresis], Christophe & Molinari, Nicolas & Daures, Jean-Pierre, 2007. "Arbitrarily shaped multiple spatial cluster detection for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3931-3945, May.
    7. Zhanjun He & Rongqi Lai & Zhipeng Wang & Huimin Liu & Min Deng, 2022. "Comparative Study of Approaches for Detecting Crime Hotspots with Considering Concentration and Shape Characteristics," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    8. Trisalyn Nelson & Barry Boots, 2005. "Identifying insect infestation hot spots: an approach using conditional spatial randomization," Journal of Geographical Systems, Springer, vol. 7(3), pages 291-311, December.
    9. Johnston, Robert J. & Ramachandran, Mahesh & Schultz, Eric T. & Segerson, Kathleen & Besedin, Elena Y., 2011. "Characterizing Spatial Pattern in Ecosystem Service Values when Distance Decay Doesn’t Apply: Choice Experiments and Local Indicators of Spatial Association," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103374, Agricultural and Applied Economics Association.
    10. Ikuho Yamada & Peter Rogerson & Gyoungju Lee, 2009. "GeoSurveillance: a GIS-based system for the detection and monitoring of spatial clusters," Journal of Geographical Systems, Springer, vol. 11(2), pages 155-173, June.
    11. Duczmal, Luiz & Assuncao, Renato, 2004. "A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 269-286, March.
    12. Ozonoff, Al & Bonetti, Marco & Forsberg, Laura & Pagano, Marcello, 2005. "Power comparisons for an improved disease clustering test," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 679-684, April.
    13. Gerald A. Carlino & Jake Carr & Robert M. Hunt & Tony E. Smith, 2010. "The agglomeration of R&D labs," Working Papers 10-33, Federal Reserve Bank of Philadelphia.
    14. repec:rri:wpaper:200506 is not listed on IDEAS
    15. Peter Congdon, 2000. "Monitoring Suicide Mortality: A Bayesian Approach," European Journal of Population, Springer;European Association for Population Studies, vol. 16(3), pages 251-284, September.
    16. Murat Yazici, 2017. "PSpatial Point Pattern Analyses and its Use in Geographical Epidemiology," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 1(5), pages 99-103, May.
    17. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    18. Rashidi, Parinaz & Wang, Tiejun & Skidmore, Andrew & Vrieling, Anton & Darvishzadeh, Roshanak & Toxopeus, Bert & Ngene, Shadrack & Omondi, Patrick, 2015. "Spatial and spatiotemporal clustering methods for detecting elephant poaching hotspots," Ecological Modelling, Elsevier, vol. 297(C), pages 180-186.
    19. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    20. Tomoya Mori & Tony E. Smith, 2014. "A probabilistic modeling approach to the detection of industrial agglomerations," Journal of Economic Geography, Oxford University Press, vol. 14(3), pages 547-588.
    21. Fei He & Daniel R. Jeske & Elizabeth Grafton‐Cardwell, 2020. "Identifying high‐density regions of pests within an orchard," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 417-431, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3627-:d:1222545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.