IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i2p283-296.html
   My bibliography  Save this article

ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization

Author

Listed:
  • Wan, You
  • Pei, Tao
  • Zhou, Chenghu
  • Jiang, Yong
  • Qu, Chenxu
  • Qiao, Youlin

Abstract

The spatial scan statistic (SaTScan) has become one of the most popular methods for detecting and evaluating spatial clusters. However, this method can only identify circular or elliptical clusters and is not a good fit for the detection of irregularly shaped clusters. Numerous methods have since been proposed to solve this problem. Nevertheless, if multiple clusters coexist, these methods may not identify the correct situation, because the interference between clusters can easily lead to a tree-like shaped cluster and cause confusion in the results. In this paper, we propose an Ant Colony Optimization based Multiple Cluster Detection (ACOMCD) algorithm, which combines classical SaTScan with the ant colony optimization (ACO) approach. In the initial stage, SaTScan is first used to mark the candidate cluster areas according to the significance of their maximum likelihood evaluations. Then ACO-based scan statistic is carried out separately on these candidate clusters to identify their natural shapes. The algorithm was designed for spatial regional count data only. Comparisons between ACOMCD, SaTScan, GaScan (genetic algorithm-based scan statistic), and FleXScan (flexibly shaped spatial scan statistic) on three kinds of simulated datasets show that ACOMCD performs the best in simultaneously determining the exact number of clusters and identifying multiple irregularly shaped clusters. A case study on esophageal cancer in eastern China further validates the correctness and effectiveness of ACOMCD.

Suggested Citation

  • Wan, You & Pei, Tao & Zhou, Chenghu & Jiang, Yong & Qu, Chenxu & Qiao, Youlin, 2012. "ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 283-296.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:283-296
    DOI: 10.1016/j.csda.2011.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002866
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Besag & James Newell, 1991. "The Detection of Clusters in Rare Diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(1), pages 143-155, January.
    2. Duczmal, Luiz & Assuncao, Renato, 2004. "A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 269-286, March.
    3. Kulldorff, Martin & Tango, Toshiro & Park, Peter J., 2003. "Power comparisons for disease clustering tests," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 665-684, April.
    4. Cucala, Lionel, 2009. "A flexible spatial scan test for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2843-2850, June.
    5. Duczmal, Luiz & Cancado, Andre L.F. & Takahashi, Ricardo H.C. & Bessegato, Lupercio F., 2007. "A genetic algorithm for irregularly shaped spatial scan statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 43-52, September.
    6. Demattei[diaeresis], Christophe & Molinari, Nicolas & Daures, Jean-Pierre, 2007. "Arbitrarily shaped multiple spatial cluster detection for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3931-3945, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Zhou & Liu Yang & Dan Ye, 2023. "Spatiotemporal Variation of Rural Vulnerability and Its Clustering Model in Guizhou Province," Land, MDPI, vol. 12(7), pages 1-25, July.
    2. Kunihiko Takahashi & Hideyasu Shimadzu, 2018. "Multiple-cluster detection test for purely temporal disease clustering: Integration of scan statistics and generalized linear models," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Ivair R. & Duczmal, Luiz & Kulldorff, Martin, 2021. "Confidence intervals for spatial scan statistic," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    2. Costa, Marcelo Azevedo & Assunção, Renato Martins & Kulldorff, Martin, 2012. "Constrained spanning tree algorithms for irregularly-shaped spatial clustering," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1771-1783.
    3. Demattei[diaeresis], Christophe & Molinari, Nicolas & Daures, Jean-Pierre, 2007. "Arbitrarily shaped multiple spatial cluster detection for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3931-3945, May.
    4. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Inkyung Jung, 2019. "Spatial scan statistics for matched case-control data," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-10, August.
    6. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    7. Smida, Zaineb & Laurent, Thibault & Cucala, Lionel, 2024. "A Hotelling spatial scan statistic for functional data: application to economic and climate data," TSE Working Papers 24-1583, Toulouse School of Economics (TSE).
    8. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
    9. Wei Wang & Sheng Li & Tao Zhang & Fei Yin & Yue Ma, 2023. "Detecting the spatial clustering of exposure–response relationships with estimation error: a novel spatial scan statistic," Biometrics, The International Biometric Society, vol. 79(4), pages 3522-3532, December.
    10. Zhou, Ruoyu & Shu, Lianjie & Su, Yan, 2015. "An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 134-146.
    11. Cucala, Lionel, 2009. "A flexible spatial scan test for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2843-2850, June.
    12. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
    13. Mohammad Meysami & Joshua P. French & Ettie M. Lipner, 2023. "Flexible-Elliptical Spatial Scan Method," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
    14. Porter, Michael D. & Brown, Donald E., 2007. "Detecting local regions of change in high-dimensional criminal or terrorist point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2753-2768, February.
    15. Smida, Zaineb & Cucala, Lionel & Gannoun, Ali & Durif, Ghislain, 2022. "A Wilcoxon-Mann-Whitney spatial scan statistic for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    16. Rhonda J. Rosychuk & Carolyn Huston & Narasimha G. N. Prasad, 2006. "Spatial Event Cluster Detection Using a Compound Poisson Distribution," Biometrics, The International Biometric Society, vol. 62(2), pages 465-470, June.
    17. Kunihiko Takahashi & Hideyasu Shimadzu, 2018. "Multiple-cluster detection test for purely temporal disease clustering: Integration of scan statistics and generalized linear models," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    18. Chadoeuf, J. & Certain, G. & Bellier, E. & Bar-Hen, A. & Couteron, P. & Monestiez, P. & Bretagnolle, V., 2011. "Estimating inter-group interaction radius for point processes with nested spatial structures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 627-640, January.
    19. Zhanjun He & Rongqi Lai & Zhipeng Wang & Huimin Liu & Min Deng, 2022. "Comparative Study of Approaches for Detecting Crime Hotspots with Considering Concentration and Shape Characteristics," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    20. Fitzpatrick, Dylan & Ni, Yun & Neill, Daniel B., 2021. "Support vector subset scan for spatial pattern detection," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:283-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.