IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1542-d808228.html
   My bibliography  Save this article

An Optimal Investigation of Convective Fluid Flow Suspended by Carbon Nanotubes and Thermal Radiation Impact

Author

Listed:
  • Dongmin Yu

    (Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132000, China
    School of Information Engineering, Nanchang University, Nanchang 330027, China
    Beijing Key Laboratory of Demand Side Multi-Energy Carriers Optimization and Interaction Technique, China Electric Power Research Institute, Beijing 100085, China
    Northeast Electric Power University and Nanchang University are in no particular order, and they are the co-first affiliation of this paper.)

  • Rijun Wang

    (Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132000, China)

Abstract

This study is focused towards analyzing the heat and flow movement among two stretching rotating disks inside water-based carbon nanotubes. The idea of thermal boundary conditions and heat convection is used and the system is expressed in partial differential equations. Using the similarity techniques, the model is successfully converted to a nonlinear ordinary differential equation. A familiar collocation method is used to simulate the outcomes of the governed system while the method is validated through a set of tables and assessed with existing literature. The physical aspects of the proposed model have been studied in detail and assisted via graphical diagrams against the variation of different parameters. It is found that the multiple-wall carbon nanotubes intensify the system quickly and improve the rate of heat transmission. It is also noted that the proposed method is in excellent in agreement with already published studies and can be extended for other physical problems. Moreover, when values of Re parameter increase, a drop is noted in the magnitude of radial velocity near the faces of the disks. It is very clear from the tabular comparison that collocation scheme is in good agreement with already published studies and homotopic solutions.

Suggested Citation

  • Dongmin Yu & Rijun Wang, 2022. "An Optimal Investigation of Convective Fluid Flow Suspended by Carbon Nanotubes and Thermal Radiation Impact," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1542-:d:808228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Sun, Tianyi & Liu, Peng, 2021. "A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system," Energy, Elsevier, vol. 234(C).
    2. Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Saqib, Muhammad & Khan, Ilyas & Shafie, Sharidan, 2018. "Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid through a porous medium," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 79-85.
    4. Nguyen-Thoi, Trung & Sheikholeslami, M. & Hamid, Muhammad & Haq, Rizwan-ul & Shafee, Ahmad, 2019. "CVFEM modeling for nanofluid behavior involving non-equilibrium model and Lorentz effect in appearance of radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemian, Mehran & Jafarmadar, Samad & Khalilarya, Shahram & Faraji, Masoud, 2022. "Energy harvesting feasibility from photovoltaic/thermal (PV/T) hybrid system with Ag/Cr2O3-glycerol nanofluid optical filter," Renewable Energy, Elsevier, vol. 198(C), pages 426-439.
    2. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengkai Gao & Dongmin Yu & Qiang Sheng, 2022. "Analytical Treatment of Unsteady Fluid Flow of Nonhomogeneous Nanofluids among Two Infinite Parallel Surfaces: Collocation Method-Based Study," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
    2. Cao, Yan & Dhahad, Hayder A. & Alsharif, Sameer & Sharma, Kamal & El.Shafy, Asem Saleh & Farhang, Babak & Mohammed, Adil Hussein, 2022. "Multi-objective optimizations and exergoeconomic analyses of a high-efficient bi-evaporator multigeneration system with freshwater unit," Renewable Energy, Elsevier, vol. 191(C), pages 699-714.
    3. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    5. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    6. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. Fan, Siyuan & Wang, Xiao & Wang, Zun & Sun, Bo & Zhang, Zhenhai & Cao, Shengxian & Zhao, Bo & Wang, Yu, 2022. "A novel image enhancement algorithm to determine the dust level on photovoltaic (PV) panels," Renewable Energy, Elsevier, vol. 201(P1), pages 172-180.
    8. Sohail, Muhammad & Naz, Rahila, 2020. "Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    9. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    10. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Ali J. Chamkha & Fatih Selimefendigil & Hakan F. Oztop, 2020. "Pulsating Flow of CNT–Water Nanofluid Mixed Convection in a Vented Trapezoidal Cavity with an Inner Conductive T-Shaped Object and Magnetic Field Effects," Energies, MDPI, vol. 13(4), pages 1-30, February.
    12. Lin, Xueshan & Huang, Tao & Bompard, Ettore & Wang, Beibei & Zheng, Yaxian, 2023. "Ex-ante market power evaluation and mitigation in day-ahead electricity market considering market maturity levels," Energy, Elsevier, vol. 278(C).
    13. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2023. "A computational numerical algorithm for thermal characterization of fractional unsteady free convection flow in an open cavity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    14. Fan, Siyuan & Wang, Xiao & Cao, Shengxian & Wang, Yu & Zhang, Yanhui & Liu, Bingzheng, 2022. "A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels," Energy, Elsevier, vol. 252(C).
    15. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2022. "An efficient numerical scheme for fractional characterization of MHD fluid model," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. Firas A. Alwawi & Hamzeh T. Alkasasbeh & Ahmed M. Rashad & Ruwaidiah Idris, 2020. "A Numerical Approach for the Heat Transfer Flow of Carboxymethyl Cellulose-Water Based Casson Nanofluid from a Solid Sphere Generated by Mixed Convection under the Influence of Lorentz Force," Mathematics, MDPI, vol. 8(7), pages 1-21, July.
    17. Sara I. Abdelsalam & Abdullah Z. Zaher, 2021. "Leveraging Elasticity to Uncover the Role of Rabinowitsch Suspension through a Wavelike Conduit: Consolidated Blood Suspension Application," Mathematics, MDPI, vol. 9(16), pages 1-25, August.
    18. Bernardo Gonçalves & João F. P. Fernandes & João Paulo N. Torres & Ricardo A. Marques Lameirinhas, 2023. "Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels," Energies, MDPI, vol. 16(12), pages 1-17, June.
    19. Shen, Yu & He, Zengxiang & Xu, Zhen & Wang, Yiye & Li, Chenxi & Zhang, Jinxia & Zhang, Kanjian & Wei, Haikun, 2022. "Modeling of photovoltaic modules under common shading conditions," Energy, Elsevier, vol. 256(C).
    20. Shing-Lih Wu & Hung-Cheng Chen & Kai-Jun Peng, 2023. "Quantification of Dust Accumulation on Solar Panels Using the Contact-Characteristics-Based Discrete Element Method," Energies, MDPI, vol. 16(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1542-:d:808228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.