IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p635-d753070.html
   My bibliography  Save this article

Objective Criticism and Negative Conclusions on Using the Fuzzy SWARA Method in Multi-Criteria Decision Making

Author

Listed:
  • Željko Stević

    (Faculty of Transport and Traffic Engineering, University of East Sarajevo, Vojvode Mišića 52, 74000 Doboj, Bosnia and Herzegovina)

  • Dillip Kumar Das

    (Sustainable Transportation Research Group, Civil Engineering, School of Engineering, University of Kwazulu Natal, Durban 4041, South Africa)

  • Rade Tešić

    (Faculty of Economics, PIM University, Despota Stefana Lazarevića bb, 78000 Banja Luka, Bosnia and Herzegovina)

  • Marijo Vidas

    (Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia)

  • Dragan Vojinović

    (Faculty of Economics Pale, University of East Sarajevo, Alekse Šantića 3, 71240 Pale, Bosnia and Herzegovina)

Abstract

The quality of output or decision-making depends on high-quality input data, their adequate evaluation, the application of adequate approaches, and accurate calculation. In this paper, an objective criticism of applying the fuzzy SWARA (step-wise weight assessment ratio analysis) method based on the Chang TFN (triangular fuzzy number) scale is performed. Through research, it has been noticed that a large number of studies use this approach and, as an epilogue, there are wrong decisions based on inconsistent values in relation to the initial assessment of decision-makers (DMs). Seven representative studies (logistics, construction industry, financial performance management, and supply chain) with different parameter structures and decision matrix sizes have been singled out. The main hypothesis has been set, which implies that the application of this approach leads to wrong decisions because the weight values of the criteria are incorrect. A comparative analysis with the improved fuzzy SWARA (IMF SWARA) method has been created and a number of negative conclusions has been reached on using the fuzzy SWARA method and the Chang scale: Primarily, that using such an approach is impossible for two or more criteria to have equal value, that allocating TFN (1,1,1) leads to criteria values that are inconsistent with expert evaluation, that the last-ranked criteria in the fuzzy SWARA method have no influential value on the ranking of alternatives, that there is a great gap between the most significant and last-ranked criteria, and that the most significant criterion has a huge impact on the evaluation of alternative solutions and decision making. As a general conclusion, it is given that this approach is not adequate for application in problems of multi-criteria decision making because it produces inadequate management of processes and activities in various spheres.

Suggested Citation

  • Željko Stević & Dillip Kumar Das & Rade Tešić & Marijo Vidas & Dragan Vojinović, 2022. "Objective Criticism and Negative Conclusions on Using the Fuzzy SWARA Method in Multi-Criteria Decision Making," Mathematics, MDPI, vol. 10(4), pages 1-19, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:635-:d:753070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koray Altintas & Ozalp Vayvay & Sinan Apak & Emine Cobanoglu, 2020. "An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    2. Miomir Stanković & Željko Stević & Dillip Kumar Das & Marko Subotić & Dragan Pamučar, 2020. "A New Fuzzy MARCOS Method for Road Traffic Risk Analysis," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    3. Peiman Ghasemi & Amir Mehdiabadi & Cristi Spulbar & Ramona Birau, 2021. "Ranking of Sustainable Medical Tourism Destinations in Iran: An Integrated Approach Using Fuzzy SWARA-PROMETHEE," Sustainability, MDPI, vol. 13(2), pages 1-32, January.
    4. Morteza Yazdani & Pascale Zaraté & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2019. "A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems," Post-Print hal-02879091, HAL.
    5. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    6. Svetla Stoilova & Nolberto Munier, 2021. "Analysis of Policies of Railway Operators Using SWOT Criteria and the SIMUS Method: A Case for the Bulgarian Railway Network," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan Wu & Guoyan Zhao & Yang Li, 2022. "Green Mining Strategy Selection via an Integrated SWOT-PEST Analysis and Fuzzy AHP-MARCOS Approach," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    2. Zeyu Lin & Hamdi Ayed & Belgacem Bouallegue & Hana Tomaskova & Saeid Jafarzadeh Ghoushchi & Gholamreza Haseli, 2021. "An Integrated Mathematical Attitude Utilizing Fully Fuzzy BWM and Fuzzy WASPAS for Risk Evaluation in a SOFC," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    3. Morteza Yazdani & Dragan Pamucar & Prasenjit Chatterjee & Ali Ebadi Torkayesh, 2022. "“A multi-tier sustainable food supplier selection model under uncertainty”," Operations Management Research, Springer, vol. 15(1), pages 116-145, June.
    4. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    5. Pasura Aungkulanon & Walailak Atthirawong & Pongchanun Luangpaiboon & Wirachchaya Chanpuypetch, 2024. "Navigating Supply Chain Resilience: A Hybrid Approach to Agri-Food Supplier Selection," Mathematics, MDPI, vol. 12(10), pages 1-41, May.
    6. Juan Carlos Martín & Veronika Rudchenko & María-Victoria Sánchez-Rebull, 2020. "The Role of Nationality and Hotel Class on Guests’ Satisfaction. A Fuzzy-TOPSIS Approach Applied in Saint Petersburg," Administrative Sciences, MDPI, vol. 10(3), pages 1-24, September.
    7. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    8. Sharma, Mahak & Antony, Rose & Sehrawat, Rajat & Cruz, Angel Contreras & Daim, Tugrul U., 2022. "Exploring post-adoption behaviors of e-service users: Evidence from the hospitality sector /online travel services," Technology in Society, Elsevier, vol. 68(C).
    9. Chia-Nan Wang & Yu-Chi Chung & Fajar Dwi Wibowo & Thanh-Tuan Dang & Ngoc-Ai-Thy Nguyen, 2023. "Sustainable Last-Mile Delivery Solution Evaluation in the Context of a Developing Country: A Novel OPA–Fuzzy MARCOS Approach," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    10. Su, Dan & Zhang, Lijun & Peng, Hua & Saeidi, Parvaneh & Tirkolaee, Erfan Babaee, 2023. "Technical challenges of blockchain technology for sustainable manufacturing paradigm in Industry 4.0 era using a fuzzy decision support system," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    11. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    12. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    13. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    14. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    15. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud, 2023. "Evaluating the risks of the internet of things in renewable energy systems using a hybrid fuzzy decision approach," Energy, Elsevier, vol. 285(C).
    16. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    17. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    18. Lixin Shen & Kannan Govindan & Madan Shankar, 2015. "Evaluation of Barriers of Corporate Social Responsibility Using an Analytical Hierarchy Process under a Fuzzy Environment—A Textile Case," Sustainability, MDPI, vol. 7(3), pages 1-22, March.
    19. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    20. Noori, Amir & Bonakdari, Hossein & Salimi, Amir Hossein & Gharabaghi, Bahram, 2021. "A group Multi-Criteria Decision-Making method for water supply choice optimization," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:635-:d:753070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.