IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p352-d732195.html
   My bibliography  Save this article

Remaining Useful Life Estimation of Aircraft Engines Using Differentiable Architecture Search

Author

Listed:
  • Pengli Mao

    (School of Energy and Power Engineering, Beihang University, Beijing 100191, China)

  • Yan Lin

    (College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China)

  • Song Xue

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)

  • Baochang Zhang

    (Institute of Artificial Intelligence, Beihang University, Beijing 100191, China)

Abstract

Prognostics and health management (PHM) applications can prevent engines from potential serious accidents by predicting the remaining useful life (RUL). Recently, data-driven methods have been widely used to solve RUL problems. The network architecture has a crucial impact on the experiential performance. However, most of the network architectures are designed manually based on human experience with a large cost of time. To address these challenges, we propose a neural architecture search (NAS) method based on gradient descent. In this study, we construct the search space with a directed acyclic graph (DAG), where a subgraph represents a network architecture. By using softmax relaxation, the search space becomes continuous and differentiable, then the gradient descent can be used for optimization. Moreover, a partial channel connection method is introduced to accelerate the searching efficiency. The experiment is conducted on C-MAPSS dataset. In the data processing step, a fault detection method is proposed based on the k-means algorithm, which drops large valueless data and promotes the estimation performance. The experimental result shows that our method achieves superior performance with the highest estimation accuracy compared with other popular studies.

Suggested Citation

  • Pengli Mao & Yan Lin & Song Xue & Baochang Zhang, 2022. "Remaining Useful Life Estimation of Aircraft Engines Using Differentiable Architecture Search," Mathematics, MDPI, vol. 10(3), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:352-:d:732195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    2. Mohammad Khishe & Fabio Caraffini & Stefan Kuhn, 2021. "Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-ray Images," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    2. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    3. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    4. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    5. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    6. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    7. Gupta, Nitin & Misra, Neeraj & Kumar, Somesh, 2015. "Stochastic comparisons of residual lifetimes and inactivity times of coherent systems with dependent identically distributed components," European Journal of Operational Research, Elsevier, vol. 240(2), pages 425-430.
    8. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Mo, Renpeng & Zhou, Han & Yin, Hongpeng & Si, Xiaosheng, 2025. "A survey on few-shot learning for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 257(PB).
    10. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    11. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Jianxun Zhang & Xiao He & Xiaosheng Si & Changhua Hu & Donghua Zhou, 2017. "A Novel Multi-Phase Stochastic Model for Lithium-Ion Batteries’ Degradation with Regeneration Phenomena," Energies, MDPI, vol. 10(11), pages 1-24, October.
    13. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    14. Barbosa de Santis, Rodrigo & Silveira Gontijo, Tiago & Azevedo Costa, Marcelo, 2021. "Condition-based maintenance in hydroelectric plants: A systematic literature review," MPRA Paper 115912, University Library of Munich, Germany.
    15. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    16. Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. J.P. Sprong & X. Jiang & H. Polinder, 2020. "Deployment of Prognostics to Optimize Aircraft Maintenance – A Literature Review," Journal of International Business Research and Marketing, Inovatus Services Ltd., vol. 5(4), pages 26-37, May.
    18. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    19. Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:352-:d:732195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.