IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2025i3p110-d1720361.html
   My bibliography  Save this article

A Multi-Agent Optimization Approach for Multimodal Collaboration in Marine Terminals

Author

Listed:
  • Ilias Alexandros Parmaksizoglou

    (Operations & Environment, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands)

  • Alessandro Bombelli

    (Operations & Environment, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands)

  • Alexei Sharpanskykh

    (Operations & Environment, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands)

Abstract

Background: The rapid growth of international maritime trade has intensified operational challenges at marine terminals due to increased interaction between vessels, trucks, and trains. Key issues include berth congestion, inefficient truck arrivals, and underutilization of terminal resources. Ensuring coordinated planning among transport modes and fostering collaboration between stakeholders such as vessel operators, logistics providers, and terminal managers is critical to mitigating these inefficiencies. Methods: This study proposes a multi-agent, multi-objective coordination model that synchronizes vessel berth allocation with truck appointment scheduling. A solution method combining prioritized planning with a neighborhood search heuristic is introduced to explore Pareto-optimal trade-offs. The performance of this approach is benchmarked against well-established multi-objective evolutionary algorithms (MOEAs), including NSGA-II and SPEA2. Results: Numerical experiments demonstrate that the proposed method generates a greater number of Pareto-optimal solutions and achieves higher hypervolume indicators compared to MOEAs. These results show improved balance among objectives such as minimizing vessel waiting times, reducing truck congestion, and optimizing terminal resource usage. Conclusions: By integrating berth allocation and truck scheduling through a transparent, multi-agent approach, this work provides decision-makers with better tools to evaluate trade-offs in port terminal operations. The proposed strategy supports more efficient, fair, and informed coordination in complex multimodal environments.

Suggested Citation

  • Ilias Alexandros Parmaksizoglou & Alessandro Bombelli & Alexei Sharpanskykh, 2025. "A Multi-Agent Optimization Approach for Multimodal Collaboration in Marine Terminals," Logistics, MDPI, vol. 9(3), pages 1-30, August.
  • Handle: RePEc:gam:jlogis:v:9:y:2025:i:3:p:110-:d:1720361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/3/110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/3/110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Gang & Govindan, Kannan & Yang, Zhongzhen, 2013. "Managing truck arrivals with time windows to alleviate gate congestion at container terminals," International Journal of Production Economics, Elsevier, vol. 141(1), pages 179-188.
    2. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    3. Shiri, Samaneh & Huynh, Nathan, 2016. "Optimization of drayage operations with time-window constraints," International Journal of Production Economics, Elsevier, vol. 176(C), pages 7-20.
    4. Phan, Mai-Ha & Kim, Kap Hwan, 2015. "Negotiating truck arrival times among trucking companies and a container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 132-144.
    5. Mengzhi Ma & Houming Fan & Xiaodan Jiang & Zhenfeng Guo, 2019. "Truck Arrivals Scheduling with Vessel Dependent Time Windows to Reduce Carbon Emissions," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    6. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    7. Ilias Alexandros Parmaksizoglou & Alessandro Bombelli & Alexei Sharpanskykh, 2024. "A Novel Auction-Based Truck Appointment System for Marine Terminals," Logistics, MDPI, vol. 8(2), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    2. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    3. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    5. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
    6. Torkjazi, Mohammad & Huynh, Nathan & Shiri, Samaneh, 2018. "Truck appointment systems considering impact to drayage truck tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 208-228.
    7. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    8. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    9. Bowei Xu & Xiaoyan Liu & Yongsheng Yang & Junjun Li & Octavian Postolache, 2021. "Optimization for a Multi-Constraint Truck Appointment System Considering Morning and Evening Peak Congestion," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    10. Mohammad Torkjazi & Nathan Huynh & Ali Asadabadi, 2022. "Modeling the Truck Appointment System as a Multi-Player Game," Logistics, MDPI, vol. 6(3), pages 1-25, July.
    11. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    12. Berktas, Nihal & Zografos, Konstantinos G., 2025. "Generic model for capacity allocation on transportation terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    13. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
    14. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    15. Jia, Shuai & Li, Chung-Lun & Meng, Qiang, 2024. "The dry dock scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    16. Chen, Rui & Meng, Qiang & Jia, Peng, 2022. "Container port drayage operations and management: Past and future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    17. Caldeira dos Santos, Murillo & Pereira, Fábio Henrique, 2021. "Development and application of a dynamic model for road port access and its impacts on port-city relationship indicators," Journal of Transport Geography, Elsevier, vol. 96(C).
    18. María D. Gracia & Rosa G. González-Ramírez & Julio Mar-Ortiz, 2017. "The impact of lanes segmentation and booking levels on a container terminal gate congestion," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 403-432, December.
    19. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    20. Lu Zhen & Shuaian Wang & Kai Wang, 2016. "Terminal allocation problem in a transshipment hub considering bunker consumption," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(7), pages 529-548, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:3:p:110-:d:1720361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.