IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v7y2023i2p32-d1161916.html
   My bibliography  Save this article

Utilization of Free Trade Agreements to Minimize Costs and Carbon Emissions in the Global Supply Chain for Sustainable Logistics

Author

Listed:
  • Yuki Kinoshita

    (Department of Informatics, Faculty of Engineering, Kindai University, 1 Takaya Umenobe, Higashi-Hiroshima 739-2116, Japan)

  • Takaki Nagao

    (Department of Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo 182-8585, Japan)

  • Hiromasa Ijuin

    (Department of Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo 182-8585, Japan)

  • Keisuke Nagasawa

    (Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8511, Japan)

  • Tetsuo Yamada

    (Department of Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo 182-8585, Japan)

  • Surendra M. Gupta

    (Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA)

Abstract

Background : Since global warming is a crucial worldwide issue, carbon tax has been introduced in the global supply chain as an environmental regulation for the reduction of greenhouse gas (GHG) emissions. Costs, GHG emissions, and carbon tax prices differ in each country due to economic conditions, energy mixes, and government policies. Additionally, multiple countries have signed a Free Trade Agreement (FTA). While FTAs result in their economic benefit, they also increase the risk of carbon leakage, which increases GHG emissions in the global supply chain due to relocation production sites from a country with stricter emission constraints to others with laxer ones. Method : This study proposes a mathematical model for decision support to minimize total costs involving carbon taxes with FTAs. Results : Our model determines suppliers, factory locations, and the number of transported parts and products with costs, FTAs, carbon taxes, and material-based GHG emissions estimated using the Life Cycle Inventory (LCI) database. The FTA utilization on the global low-carbon supply chain is examined by comparing the constructed supply chains with and without FTAs, and by conducting sensitivity analysis of carbon tax prices. Conclusions : We found that FTAs would not cause carbon leakage directly and would be effective for reducing GHG emissions economically.

Suggested Citation

  • Yuki Kinoshita & Takaki Nagao & Hiromasa Ijuin & Keisuke Nagasawa & Tetsuo Yamada & Surendra M. Gupta, 2023. "Utilization of Free Trade Agreements to Minimize Costs and Carbon Emissions in the Global Supply Chain for Sustainable Logistics," Logistics, MDPI, vol. 7(2), pages 1-21, June.
  • Handle: RePEc:gam:jlogis:v:7:y:2023:i:2:p:32-:d:1161916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/7/2/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/7/2/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Nitsche, 2020. "Decrypting the Belt and Road Initiative: Barriers and Development Paths for Global Logistics Networks," Sustainability, MDPI, vol. 12(21), pages 1-23, November.
    2. Tsai Chi Kuo & Yile Lee, 2019. "Using Pareto Optimization to Support Supply Chain Network Design within Environmental Footprint Impact Assessment," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    3. Tsiakis, Panagiotis & Papageorgiou, Lazaros G., 2008. "Optimal production allocation and distribution supply chain networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 468-483, February.
    4. Benjamin Nitsche, 2021. "Exploring the Potentials of Automation in Logistics and Supply Chain Management: Paving the Way for Autonomous Supply Chains," Logistics, MDPI, vol. 5(3), pages 1-9, August.
    5. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Rena Kondo & Yuki Kinoshita & Tetsuo Yamada, 2019. "Green Procurement Decisions with Carbon Leakage by Global Suppliers and Order Quantities under Different Carbon Tax," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
    7. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    8. Hasegawa, Shota & Kinoshita, Yuki & Yamada, Tetsuo & Bracke, Stefan, 2019. "Life cycle option selection of disassembly parts for material-based CO2 saving rate and recovery cost: Analysis of different market value and labor cost for reused parts in German and Japanese cases," International Journal of Production Economics, Elsevier, vol. 213(C), pages 229-242.
    9. Fahimnia, Behnam & Sarkis, Joseph & Choudhary, Alok & Eshragh, Ali, 2015. "Tactical supply chain planning under a carbon tax policy scheme: A case study," International Journal of Production Economics, Elsevier, vol. 164(C), pages 206-215.
    10. Zakeri, Atefe & Dehghanian, Farzad & Fahimnia, Behnam & Sarkis, Joseph, 2015. "Carbon pricing versus emissions trading: A supply chain planning perspective," International Journal of Production Economics, Elsevier, vol. 164(C), pages 197-205.
    11. Vidal, Carlos J. & Goetschalckx, Marc, 2001. "A global supply chain model with transfer pricing and transportation cost allocation," European Journal of Operational Research, Elsevier, vol. 129(1), pages 134-158, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Araújo dos Reis & José Eugenio Leal & Antônio Márcio Tavares Thomé, 2023. "A Two-Stage Stochastic Linear Programming Model for Tactical Planning in the Soybean Supply Chain," Logistics, MDPI, vol. 7(3), pages 1-26, August.
    2. Kateryna Czerniachowska & Radosław Wichniarek & Krzysztof Żywicki, 2023. "A Model for an Order-Picking Problem with a One-Directional Conveyor and Buffer," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruozhen Qiu & Shunpeng Shi & Yue Sun, 2019. "A p -Robust Green Supply Chain Network Design Model under Uncertain Carbon Price and Demand," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    2. Sina Abbasi & Babek Erdebilli, 2023. "Green Closed-Loop Supply Chain Networks’ Response to Various Carbon Policies during COVID-19," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    3. Zhou, Xiaoyang & Wei, Xiaoya & Lin, Jun & Tian, Xin & Lev, Benjamin & Wang, Shouyang, 2021. "Supply chain management under carbon taxes: A review and bibliometric analysis," Omega, Elsevier, vol. 98(C).
    4. Rena Kondo & Yuki Kinoshita & Tetsuo Yamada, 2019. "Green Procurement Decisions with Carbon Leakage by Global Suppliers and Order Quantities under Different Carbon Tax," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
    5. Yang, Yuxiang & Goodarzi, Shadi & Jabbarzadeh, Armin & Fahimnia, Behnam, 2022. "In-house production and outsourcing under different emissions reduction regulations: An equilibrium decision model for global supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    6. Meng, Xiaoge & Yao, Zhong & Nie, Jiajia & Zhao, Yingxue & Li, Zenglu, 2018. "Low-carbon product selection with carbon tax and competition: Effects of the power structure," International Journal of Production Economics, Elsevier, vol. 200(C), pages 224-230.
    7. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    8. Feng, Cheng-Min & Wu, Pei-Ju, 2009. "A tax savings model for the emerging global manufacturing network," International Journal of Production Economics, Elsevier, vol. 122(2), pages 534-546, December.
    9. Ahmad Rezaee & Farzad Dehghanian & Behnam Fahimnia & Benita Beamon, 2017. "Green supply chain network design with stochastic demand and carbon price," Annals of Operations Research, Springer, vol. 250(2), pages 463-485, March.
    10. Vitor William Batista Martins & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Rayra Brandão & Antônio Erlindo Braga Júnior & Verônica de Menezes Nascimento Nagata, 2022. "Analysis of the Activities That Make Up the Reverse Logistics Processes and Their Importance for the Future of Logistics Networks: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(3), pages 1-17, August.
    11. Gaigné, C. & Hovelaque, V. & Mechouar, Y., 2020. "Carbon tax and sustainable facility location: The role of production technology," International Journal of Production Economics, Elsevier, vol. 224(C).
    12. Malladi, Krishna Teja & Sowlati, Taraneh, 2020. "Impact of carbon pricing policies on the cost and emission of the biomass supply chain: Optimization models and a case study," Applied Energy, Elsevier, vol. 267(C).
    13. Zhitao Xu & Adel Elomri & Shaligram Pokharel & Fatih Mutlu, 2019. "The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    14. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    15. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    16. Malladi, Krishna Teja & Sowlati, Taraneh, 2020. "Bi-objective optimization of biomass supply chains considering carbon pricing policies," Applied Energy, Elsevier, vol. 264(C).
    17. M. Boronoos & M. Mousazadeh & S. Ali Torabi, 2021. "A robust mixed flexible-possibilistic programming approach for multi-objective closed-loop green supply chain network design," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3368-3395, March.
    18. Mariel, Katharina & Minner, Stefan, 2015. "Strategic capacity planning in automotive production networks under duties and duty drawbacks," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 687-700.
    19. Qiang Du & Jiajie Zhou, 2022. "Evolution of Low Carbon Supply Chain Research: A Systematic Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
    20. Ravi Shankar Kumar & Alok Choudhary & Soudagar A. K. Irfan Babu & Sri Krishna Kumar & A. Goswami & M. K. Tiwari, 2017. "Designing multi-period supply chain network considering risk and emission: a multi-objective approach," Annals of Operations Research, Springer, vol. 250(2), pages 427-461, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:7:y:2023:i:2:p:32-:d:1161916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.