IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i12p506-d459587.html
   My bibliography  Save this article

Identifying Land Use Change Trajectories in Brazil’s Agricultural Frontier

Author

Listed:
  • Adeline M. Maciel

    (National Institute for Space Research (INPE), São José dos Campos, São Paulo 12227-010, Brazil
    These authors contributed equally to this work.)

  • Michelle C. A. Picoli

    (National Institute for Space Research (INPE), São José dos Campos, São Paulo 12227-010, Brazil
    These authors contributed equally to this work.)

  • Lubia Vinhas

    (National Institute for Space Research (INPE), São José dos Campos, São Paulo 12227-010, Brazil
    These authors contributed equally to this work.)

  • Gilberto Camara

    (National Institute for Space Research (INPE), São José dos Campos, São Paulo 12227-010, Brazil
    Group on Earth Observations (GEO), CH-1211 Geneva, Switzerland
    These authors contributed equally to this work.)

Abstract

Many of the world’s agricultural frontiers are located in the tropics. Crop and cattle expansion in these regions has a strong environmental impact. This paper examines land use and land cover transformations in Brazil, where large swaths of natural vegetation are being removed to make way for agricultural production. In Brazil, the land use dynamics are of great interest regarding the country’s sustainable development and climate mitigation actions, leading to the formulation and implantation of public policies and supply chain interventions to reduce deforestation. This paper uses temporal trajectory analysis to discuss the patterns of agricultural practices change in the different biomes of Mato Grosso State, one of Brazil’s agricultural frontiers. Taking yearly land use and cover classified images from 2001 to 2017, we identified, quantified, and spatialized areas of stability, intensification, reduction, interchange, and expansion of single and double cropping. The LUC Calculus was used as a tool to extract information about trajectories and trajectories of change. Over two decades, the land use change trajectories uncover the interplay between forest removal, cattle raising, grain production, and secondary vegetation regrowth. We observed a direct relationship between the conversion of forest areas to pasture and of pasture to agriculture areas in the Amazon portion of the Mato Grosso State in different periods. Our results enable a better understanding of trends in agricultural practices.

Suggested Citation

  • Adeline M. Maciel & Michelle C. A. Picoli & Lubia Vinhas & Gilberto Camara, 2020. "Identifying Land Use Change Trajectories in Brazil’s Agricultural Frontier," Land, MDPI, vol. 9(12), pages 1-16, December.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:12:p:506-:d:459587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/12/506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/12/506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azevedo-Ramos, Claudia & Moutinho, Paulo & Arruda, Vera Laísa da S. & Stabile, Marcelo C.C. & Alencar, Ane & Castro, Isabel & Ribeiro, João Paulo, 2020. "Lawless land in no man’s land: The undesignated public forests in the Brazilian Amazon," Land Use Policy, Elsevier, vol. 99(C).
    2. Hampf, Anna C. & Stella, Tommaso & Berg-Mohnicke, Michael & Kawohl, Tobias & Kilian, Markus & Nendel, Claas, 2020. "Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development," Agricultural Systems, Elsevier, vol. 177(C).
    3. Michelle C. A. Picoli & Ana Rorato & Pedro Leitão & Gilberto Camara & Adeline Maciel & Patrick Hostert & Ieda Del’Arco Sanches, 2020. "Impacts of Public and Private Sector Policies on Soybean and Pasture Expansion in Mato Grosso—Brazil from 2001 to 2017," Land, MDPI, vol. 9(1), pages 1-15, January.
    4. Peter Richards, 2015. "What Drives Indirect Land Use Change? How Brazil's Agriculture Sector Influences Frontier Deforestation," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 105(5), pages 1026-1040, September.
    5. Guerra, Angélica & Roque, Fabio de Oliveira & Garcia, Letícia Couto & Ochoa-Quintero, José Manuel & Oliveira, Paulo Tarso Sanches de & Guariento, Rafael Dettogni & Rosa, Isabel M.D., 2020. "Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems," Land Use Policy, Elsevier, vol. 91(C).
    6. Luciana S. Soler & Peter H. Verburg & Diógenes S. Alves, 2014. "Evolution of Land Use in the Brazilian Amazon: From Frontier Expansion to Market Chain Dynamics," Land, MDPI, vol. 3(3), pages 1-34, August.
    7. West, Thales A.P. & Fearnside, Philip M., 2021. "Brazil’s conservation reform and the reduction of deforestation in Amazonia," Land Use Policy, Elsevier, vol. 100(C).
    8. Silva, C.A. & Lima, Mendelson, 2018. "Soy Moratorium in Mato Grosso: Deforestation undermines the agreement," Land Use Policy, Elsevier, vol. 71(C), pages 540-542.
    9. Gollnow, Florian & Hissa, Leticia de Barros Viana & Rufin, Philippe & Lakes, Tobia, 2018. "Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil," Land Use Policy, Elsevier, vol. 78(C), pages 377-385.
    10. Avery S. Cohn & Leah K. VanWey & Stephanie A. Spera & John F. Mustard, 2016. "Cropping frequency and area response to climate variability can exceed yield response," Nature Climate Change, Nature, vol. 6(6), pages 601-604, June.
    11. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Jie Zhou & Yelong Zeng, 2020. "Mapping Land Use Land Cover Transitions at Different Spatiotemporal Scales in West Africa," Sustainability, MDPI, vol. 12(20), pages 1-52, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifang Wang & Linlin Cheng & Yang Zheng, 2023. "An Adjusted Landscape Ecological Security of Cultivated Land Evaluation Method Based on the Interaction between Cultivated Land and Surrounding Land Types," Land, MDPI, vol. 12(4), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arvor, Damien & Silgueiro, Vinicius & Manzon Nunes, Gustavo & Nabucet, Jean & Pereira Dias, André, 2021. "The 2008 map of consolidated rural areas in the Brazilian Legal Amazon state of Mato Grosso: Accuracy assessment and implications for the environmental regularization of rural properties," Land Use Policy, Elsevier, vol. 103(C).
    2. Minghui Zhang & Gabriel Abrahao & Sally Thompson, 2021. "Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change," Climatic Change, Springer, vol. 168(3), pages 1-28, October.
    3. Carrero, Gabriel Cardoso & Walker, Robert Tovey & Simmons, Cynthia Suzanne & Fearnside, Philip Martin, 2022. "Land grabbing in the Brazilian Amazon: Stealing public land with government approval," Land Use Policy, Elsevier, vol. 120(C).
    4. Daniella Tiemi Sasaki Okida & Osmar Abílio de Carvalho Júnior & Osmar Luiz Ferreira de Carvalho & Roberto Arnaldo Trancoso Gomes & Renato Fontes Guimarães, 2021. "Relationship between Land Property Security and Brazilian Amazon Deforestation in the Mato Grosso State during the Period 2013–2018," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    5. Tingting Li & Yanfei Wang & Changquan Liu & Shuangshuang Tu, 2021. "Research on Identification of Multiple Cropping Index of Farmland and Regional Optimization Scheme in China Based on NDVI Data," Land, MDPI, vol. 10(8), pages 1-16, August.
    6. Peter Richards, 2018. "It’s not just where you farm; it’s whether your neighbor does too. How agglomeration economies are shaping new agricultural landscapes," Journal of Economic Geography, Oxford University Press, vol. 18(1), pages 87-110.
    7. Massigoge, Ignacio & Carcedo, Ana & de Borja Reis, Andre Froes & Mitchell, Clay & Day, Scott & Oliverio, Joaquin & Truong, Sandra H. & McCormick, Ryan F. & Rotundo, Jose & Lira, Sara & Ciampitti, Igna, 2023. "Exploring avenues for agricultural intensification: A case study for maize-soybean in the Southern US region," Agricultural Systems, Elsevier, vol. 204(C).
    8. Dou, Yue & Silva, Ramon Felipe Bicudo da & Batistella, Mateus & Torres, Sara & Moran, Emilio & Liu, Jianguo, 2023. "Mapping crop producer perceptions: The role of global drivers on local agricultural land use in Brazil," Land Use Policy, Elsevier, vol. 133(C).
    9. Ermgassen, Erasmus Klaus Helge Justus zu & Ayre, Ben & Godar, Javier & Bastos Lima, Mairon G. & Bauch, Simone & Garrett, Rachael & Green, Jonathan & Lathuillière, Michael J & Löfgren, Pernilla & MacFa, 2019. "Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector," AgriXiv xb3nk, Center for Open Science.
    10. Wilfredo L. Maldonado & Jessica A. Barbosa, 2023. "Determinants of Agricultural Fires: An Aggregative Games Approach," Working Papers, Department of Economics 2023_12, University of São Paulo (FEA-USP).
    11. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    12. Garrett, R.D. & Grabs, J. & Cammelli, F. & Gollnow, F. & Levy, S.A., 2022. "Should payments for environmental services be used to implement zero-deforestation supply chain policies? The case of soy in the Brazilian Cerrado," World Development, Elsevier, vol. 152(C).
    13. Hildegart Ahumada & Magdalena Cornejo, 2019. "How econometrics can help us understand the effects of climate change on crop yields: the case of soybeans," School of Government Working Papers wp_gob_2019_2, Universidad Torcuato Di Tella.
    14. Nelson Villoria & Rachael Garrett & Florian Gollnow & Kimberly Carlson, 2022. "Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Reginaldo Carvalho Santos & Carlos Antonio Silva Junior & Leandro Denis Battirola & Mendelson Lima, 2022. "Importance of legislation for maintaining forests on private properties in the Brazilian Cerrado," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3356-3370, March.
    16. Müller-Hansen, Finn & Heitzig, Jobst & Donges, Jonathan & Cardoso, Manoel F. & Dalla-Nora, Eloi L. & Andrade, Pedro R. & Kurths, Jürgen & Thonicke, Kirsten, 2019. "Can intensification of cattle ranching reduce deforestation in the Amazon? Insights from an agent-based social-ecological model," SocArXiv x5q9j, Center for Open Science.
    17. Conceição, Katyanne V. & Chaves, Michel E.D. & Picoli, Michelle C.A. & Sánchez, Alber H. & Soares, Anderson R. & Mataveli, Guilherme A.V. & Silva, Daniel E. & Costa, Joelma S. & Camara, Gilberto, 2021. "Government policies endanger the indigenous peoples of the Brazilian Amazon," Land Use Policy, Elsevier, vol. 108(C).
    18. Damm, Yannic Rudá & Börner, Jan & Gerber, Nicolas, 2021. "Health Effects of the Amazon Soy Moratorium," 2021 Conference, August 17-31, 2021, Virtual 315401, International Association of Agricultural Economists.
    19. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Min Jiang & Jie Zhou & Yelong Zeng & Ali Bennour, 2021. "Modeling the Underlying Drivers of Natural Vegetation Occurrence in West Africa with Binary Logistic Regression Method," Sustainability, MDPI, vol. 13(9), pages 1-37, April.
    20. Henrique Luis Godinho Cassol & Egidio Arai & Edson Eyji Sano & Andeise Cerqueira Dutra & Tânia Beatriz Hoffmann & Yosio Edemir Shimabukuro, 2020. "Maximum Fraction Images Derived from Year-Based Project for On-Board Autonomy-Vegetation (PROBA-V) Data for the Rapid Assessment of Land Use and Land Cover Areas in Mato Grosso State, Brazil," Land, MDPI, vol. 9(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:12:p:506-:d:459587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.