IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v91y2020ics0264837719315595.html
   My bibliography  Save this article

Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems

Author

Listed:
  • Guerra, Angélica
  • Roque, Fabio de Oliveira
  • Garcia, Letícia Couto
  • Ochoa-Quintero, José Manuel
  • Oliveira, Paulo Tarso Sanches de
  • Guariento, Rafael Dettogni
  • Rosa, Isabel M.D.

Abstract

Modeling scenarios can help identify drivers of and potential changes in land use, particularly in rapidly changing landscapes such as the tropics. One of the places where most of the recent anthropogenic land use changes have been occurring is the "arc of deforestation" of the Amazon, where several scenarios have been constructed. Such modeling scenarios, however, have been implemented less frequently in wetland areas, but these are also undergoing rapid change. An example is the Pantanal, one of the largest wetlands on the planet located in the Upper Paraguay River Basin (UPRB). The UPRB is formed by the lowland (Pantanal) and the plateau (Cerrado and Amazon where the spring-fed rivers are). We used a spatially explicit model to identify drivers of vegetation loss in the Pantanal and surrounding area (UPRB) and estimated potential vegetation loss for the next 30 years. The model is probabilistic and considers that vegetation loss is contagious, so that the local rate of deforestation increases over time if adjacent sites are deforested, also taking into account the drivers identified in those locations. Our study is the first to simulate vegetation loss at property-scale, over 20,000 properties, for the entire UPRB in Brazil, taking into account the relationship between the plateau, where headwaters are located, and the lowland, where flooded-areas are concentrated. The drivers of vegetation loss identified for the lowland (distance to roads and rivers and elevation) differed from those for the plateau (distance to cities), demonstrating the relevance of analyzing areas separately. The cumulative rate of native vegetation loss projected for 2050 was 3% for the lowland and 10% for the plateau, representing losses of 6045 km2 and of native vegetation area decreasing from 87% to 83% and 7960 km2 from 39% to 35% respectively by 2050, if changes continue at the same pace and if the environmental legislation is followed. The projected vegetation loss in the UPRB forms a geographical arc, very similar to that observed in the Amazon, from the plateau into the lowland. The arc is directly related to areas with no or low flooding frequency because they are suitable for agriculture. The identification of this arc of vegetation loss calls for urgent conservation policies for this wetland and new perspectives for management.

Suggested Citation

  • Guerra, Angélica & Roque, Fabio de Oliveira & Garcia, Letícia Couto & Ochoa-Quintero, José Manuel & Oliveira, Paulo Tarso Sanches de & Guariento, Rafael Dettogni & Rosa, Isabel M.D., 2020. "Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems," Land Use Policy, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:lauspo:v:91:y:2020:i:c:s0264837719315595
    DOI: 10.1016/j.landusepol.2019.104388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837719315595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2019.104388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isabel M D Rosa & Drew Purves & Carlos Souza Jr & Robert M Ewers, 2013. "Predictive Modelling of Contagious Deforestation in the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-14, October.
    2. Thaís Pacheco Kasecker & Mario Barroso Ramos-Neto & Jose Maria Cardoso Silva & Fabio Rubio Scarano, 2018. "Ecosystem-based adaptation to climate change: defining hotspot municipalities for policy design and implementation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 981-993, August.
    3. Pedro R. R. Rochedo & Britaldo Soares-Filho & Roberto Schaeffer & Eduardo Viola & Alexandre Szklo & André F. P. Lucena & Alexandre Koberle & Juliana Leroy Davis & Raoni Rajão & Regis Rathmann, 2018. "The threat of political bargaining to climate mitigation in Brazil," Nature Climate Change, Nature, vol. 8(8), pages 695-698, August.
    4. John H. Hartig & David Bennion, 2017. "Historical Loss and Current Rehabilitation of Shoreline Habitat along an Urban-Industrial River—Detroit River, Michigan, USA," Sustainability, MDPI, vol. 9(5), pages 1-20, May.
    5. Britaldo Silveira Soares-Filho & Daniel Curtis Nepstad & Lisa M. Curran & Gustavo Coutinho Cerqueira & Ricardo Alexandrino Garcia & Claudia Azevedo Ramos & Eliane Voll & Alice McDonald & Paul Lefebvre, 2006. "Modelling conservation in the Amazon basin," Nature, Nature, vol. 440(7083), pages 520-523, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nunes, André Valle & Chiaravalloti, Rafael Morais & de Oliveira Roque, Fabio & Fischer, Erich & Angelini, Ronaldo & Ceron, Karoline & Mateus, Lucia & Penha, Jerry, 2023. "Increasing social risk and markets demand lead to a more selective fishing across the Pantanal wetland," Ecological Economics, Elsevier, vol. 208(C).
    2. Yihao Zhang & Jianzhong Yan & Xian Cheng & Xinjun He, 2021. "Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau," IJERPH, MDPI, vol. 18(5), pages 1-24, March.
    3. Adeline M. Maciel & Michelle C. A. Picoli & Lubia Vinhas & Gilberto Camara, 2020. "Identifying Land Use Change Trajectories in Brazil’s Agricultural Frontier," Land, MDPI, vol. 9(12), pages 1-16, December.
    4. Xiongyi Zhang & Jia Ning, 2023. "Patterns, Trends, and Causes of Vegetation Change in the Three Rivers Headwaters Region," Land, MDPI, vol. 12(6), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Manuel Ochoa-Quintero & Charlotte H. Chang & Toby A. Gardner & Mariluce Rezende Messias & William J. Sutherland & Fernanda A. C. Delben, 2017. "Habitat Loss on Rondon’s Marmoset Potential Distribution," Land, MDPI, vol. 6(1), pages 1-15, January.
    2. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    3. Sébastien Marchand, 2011. "Technical Efficiency, Farm Size and Tropical Deforestation in the Brazilian Amazonian Forest," CERDI Working papers halshs-00552981, HAL.
    4. Claudia Suzanne Marie Nathalie Vitel & Gabriel Cardoso Carrero & Mariano Colini Cenamo & Maya Leroy & Paulo Mauricio Lima A. Graça & Philip Martin Fearnside, 2013. "Land-use Change Modeling in a Brazilian Indigenous Reserve: Construction of a Reference Scenario for the Suruí REDD Project," Post-Print hal-01466513, HAL.
    5. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    6. Gabriela Simonet & Julie Subervie & Driss Ezzine-De-Blas & Marina Cromberg & Amy Duchelle, 2015. "Paying smallholders not to cut down the amazon forest: impact evaluation of a REDD+ pilot project," Working Papers 1514, Chaire Economie du climat.
    7. Debora Sotto & Arlindo Philippi & Tan Yigitcanlar & Md Kamruzzaman, 2019. "Aligning Urban Policy with Climate Action in the Global South: Are Brazilian Cities Considering Climate Emergency in Local Planning Practice?," Energies, MDPI, vol. 12(18), pages 1-31, September.
    8. José Gomis-Cebolla & Juan C. Jiménez-Muñoz & José A. Sobrino, 2016. "MODIS-Based Monthly LST Products over Amazonia under Different Cloud Mask Schemes," Data, MDPI, vol. 1(2), pages 1-10, July.
    9. Conceição, Katyanne V. & Chaves, Michel E.D. & Picoli, Michelle C.A. & Sánchez, Alber H. & Soares, Anderson R. & Mataveli, Guilherme A.V. & Silva, Daniel E. & Costa, Joelma S. & Camara, Gilberto, 2021. "Government policies endanger the indigenous peoples of the Brazilian Amazon," Land Use Policy, Elsevier, vol. 108(C).
    10. Santos, Mário & Bastos, Rita & Cabral, João Alexandre, 2013. "Converting conventional ecological datasets in dynamic and dynamic spatially explicit simulations: Current advances and future applications of the Stochastic Dynamic Methodology (StDM)," Ecological Modelling, Elsevier, vol. 258(C), pages 91-100.
    11. Franklin, Sergio L. & Pindyck, Robert S., 2018. "Tropical Forests, Tipping Points, and the Social Cost of Deforestation," Ecological Economics, Elsevier, vol. 153(C), pages 161-171.
    12. Franco-Solís, Alberto & Montanía, Claudia V., 2021. "Dynamics of deforestation worldwide: A structural decomposition analysis of agricultural land use in South America," Land Use Policy, Elsevier, vol. 109(C).
    13. Camila Callegari & Tarik Tanure & Ana Carolina Oliveira Fiorini & Eduardo Haddad & Edson Domingues & Aline Magalhães & Fernando Perobelli & Alexandre Porsse & André F. P. Lucena & Eveline Vasquez-Arro, 2023. "The Role of Cities: Linking Integrated Assessment Models to Urban Solutions," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    14. Ruth Delzeit & Robert Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel &, 2020. "Linking Global CGE Models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 162-195, June.
    15. Bernardo F. T. Rudorff & Marcos Adami & Joel Risso & Daniel Alves De Aguiar & Bernardo Pires & Daniel Amaral & Leandro Fabiani & Izabel Cecarelli, 2012. "Remote Sensing Images to Detect Soy Plantations in the Amazon Biome—The Soy Moratorium Initiative," Sustainability, MDPI, vol. 4(5), pages 1-15, May.
    16. Minghui Zhang & Gabriel Abrahao & Sally Thompson, 2021. "Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change," Climatic Change, Springer, vol. 168(3), pages 1-28, October.
    17. Kaushal, Kevin R. & Navrud, Ståle, 2018. "Global Biodiversity Costs of Climate Change. Improving the damage assessment of species loss in Integrated Assessment Models," Working Paper Series 4-2018, Norwegian University of Life Sciences, School of Economics and Business.
    18. Miranda, Raul & Simoes, Sofia & Szklo, Alexandre & Schaeffer, Roberto, 2019. "Adding detailed transmission constraints to a long-term integrated assessment model – A case study for Brazil using the TIMES model," Energy, Elsevier, vol. 167(C), pages 791-803.
    19. Changjun Gu & Pei Zhao & Qiong Chen & Shicheng Li & Lanhui Li & Linshan Liu & Yili Zhang, 2020. "Forest Cover Change and the Effectiveness of Protected Areas in the Himalaya since 1998," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    20. Carrero, Gabriel Cardoso & Walker, Robert Tovey & Simmons, Cynthia Suzanne & Fearnside, Philip Martin, 2022. "Land grabbing in the Brazilian Amazon: Stealing public land with government approval," Land Use Policy, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:91:y:2020:i:c:s0264837719315595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.