IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i12p482-d454695.html
   My bibliography  Save this article

Soil Penetration Resistance after One-Time Inversion Tillage: A Spatio-Temporal Analysis at the Field Scale

Author

Listed:
  • Michael Kuhwald

    (Department of Geography, Landscape Ecology and Geoinformation Science, Kiel University, Ludewig-Meyn-Str. 14, 24118 Kiel, Germany)

  • Wolfgang B. Hamer

    (Department of Geography, Landscape Ecology and Geoinformation Science, Kiel University, Ludewig-Meyn-Str. 14, 24118 Kiel, Germany)

  • Joachim Brunotte

    (Institute of Agricultural Technology, Johann Heinrich von Thünen Institute, Bundesallee 47, 38116 Braunschweig, Germany)

  • Rainer Duttmann

    (Department of Geography, Landscape Ecology and Geoinformation Science, Kiel University, Ludewig-Meyn-Str. 14, 24118 Kiel, Germany)

Abstract

Conservation agriculture may lead to increased penetration resistance due to soil compaction. To loosen the topsoil and lower the compaction, one-time inversion tillage (OTIT) is a measure frequently used in conservation agriculture. However, the duration of the positive effects of this measure on penetration resistance is sparsely known. Therefore, the aim of this study was to analyze the spatio-temporal behavior of penetration resistance after OTIT as an indicator for soil compaction. A field subdivided into three differently tilled plots (conventional tillage with moldboard plough to 30 cm depth (CT), reduced tillage with chisel plough to 25 cm depth (RT1) and reduced tillage with disk harrow to 10 cm depth (RT2)) served as study area. In 2014, the entire field was tilled by moldboard plough and penetration resistance was recorded in the following 5 years. The results showed that OTIT reduced the penetration resistance in both RT-plots and led to an approximation in all three plots. However, after 18 (RT2) and 30 months (RT1), the differences in penetration resistance were higher ( p < 0.01) in both RT-plots compared to CT. Consequently, OTIT can effectively remove the compacted layer developed in conservation agriculture. However, the lasting effect seems to be relatively short.

Suggested Citation

  • Michael Kuhwald & Wolfgang B. Hamer & Joachim Brunotte & Rainer Duttmann, 2020. "Soil Penetration Resistance after One-Time Inversion Tillage: A Spatio-Temporal Analysis at the Field Scale," Land, MDPI, vol. 9(12), pages 1-21, December.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:12:p:482-:d:454695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/12/482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/12/482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renton, Michael & Flower, Ken C., 2015. "Occasional mouldboard ploughing slows evolution of resistance and reduces long-term weed populations in no-till systems," Agricultural Systems, Elsevier, vol. 139(C), pages 66-75.
    2. Michael Kuhwald & Katja Dörnhöfer & Natascha Oppelt & Rainer Duttmann, 2018. "Spatially Explicit Soil Compaction Risk Assessment of Arable Soils at Regional Scale: The SaSCiA-Model," Sustainability, MDPI, vol. 10(5), pages 1-29, May.
    3. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    4. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haixia Wu & Hantao Hao & Hongzhen Lei & Yan Ge & Hengtong Shi & Yan Song, 2021. "Farm Size, Risk Aversion and Overuse of Fertilizer: The Heterogeneity of Large-Scale and Small-Scale Wheat Farmers in Northern China," Land, MDPI, vol. 10(2), pages 1-15, January.
    2. Felicia Chețan & Cornel Chețan & Ileana Bogdan & Paula Ioana Moraru & Adrian Ioan Pop & Teodor Rusu, 2022. "Use of Vegetable Residues and Cover Crops in the Cultivation of Maize Grown in Different Tillage Systems," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    3. Mumah, Edwin & Chen, Yangfen & Hong, Yu & Okello, Dickson, 2024. "Machinery Adoption and Its Effect on Maize Productivity among Smallholder Farmers in Western Kenya: Evidence from the Chisel Harrow Tillage Practice," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 5(1), January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberts Auzins & Ieva Leimane & Agnese Krievina & Inga Morozova & Andris Miglavs & Peteris Lakovskis, 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage," Agriculture, MDPI, vol. 13(8), pages 1-25, August.
    2. Yubo Liao & Bangbang Zhang & Xiangbin Kong & Liangyou Wen & Dongheng Yao & Yuxuan Dang & Wenguang Chen, 2022. "A Cooperative-Dominated Model of Conservation Tillage to Mitigate Soil Degradation on Cultivated Land and Its Effectiveness Evaluation," Land, MDPI, vol. 11(8), pages 1-19, August.
    3. Rui Wang & Lijuan Ma & Wei Lv & Jun Li, 2022. "Rotational Tillage: A Sustainable Management Technique for Wheat Production in the Semiarid Loess Plateau," Agriculture, MDPI, vol. 12(10), pages 1-12, September.
    4. José Camilo Bedano & Anahí Domínguez, 2016. "Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas," Sustainability, MDPI, vol. 8(7), pages 1-25, July.
    5. Subhradip Bhattacharjee & Amitava Panja & Moumita Panda & Subham Dutta & Susanta Dutta & Rakesh Kumar & Dinesh Kumar & Malu Ram Yadav & Tatiana Minkina & Valery P. Kalinitchenko & Rupesh Kumar Singh &, 2023. "How Did Research on Conservation Agriculture Evolve over the Years? A Bibliometric Analysis," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    6. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    7. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    9. Monika Vilkiene & Ieva Mockeviciene & Grazina Kadziene & Danute Karcauskiene & Regina Repsiene & Ona Auskalniene, 2023. "Bacterial Communities: Interaction to Abiotic Conditions under Effect of Anthropogenic Pressure," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    10. Erika Tobiašová & Joanna Lemanowicz & Bożena Dębska & Martina Kunkelová & Juraj Sakáč, 2023. "The Effect of Reduced and Conventional Tillage Systems on Soil Aggregates and Organic Carbon Parameters of Different Soil Types," Agriculture, MDPI, vol. 13(4), pages 1-12, March.
    11. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    12. Nana Chen & Xin Zhao & Shuxian Dou & Aixing Deng & Chengyan Zheng & Tiehua Cao & Zhenwei Song & Weijian Zhang, 2023. "The Tradeoff between Maintaining Maize ( Zea mays L.) Productivity and Improving Soil Quality under Conservation Tillage Practice in Semi-Arid Region of Northeast China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    13. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    14. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    15. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    16. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    17. J. Carl Ureta & Lucas Clay & Marzieh Motallebi & Joan Ureta, 2020. "Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services," Land, MDPI, vol. 10(1), pages 1-20, December.
    18. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    19. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    20. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:12:p:482-:d:454695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.