IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i6p1302-d1681975.html
   My bibliography  Save this article

Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis

Author

Listed:
  • A A Alazba

    (Alamoudi Water Research, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
    Department of Agricultural Engineering, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Amr Mossad

    (Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, Hadaek Shoubra, P.O. Box 68, Cairo 11241, Egypt)

  • Hatim M. E. Geli

    (New Mexico Water Resources Research Institute, Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA)

  • Ahmed El-Shafei

    (Department of Agricultural Engineering, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Ahmed Elkatoury

    (Alamoudi Water Research, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
    Department of Agricultural Engineering, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Mahmoud Ezzeldin

    (Alamoudi Water Research, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
    Department of Agricultural Engineering, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Nasser Alrdyan

    (Alamoudi Water Research, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Farid Radwan

    (Alamoudi Water Research, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

Abstract

Drought, a natural phenomenon intricately intertwined with the broader canvas of climate change, exacts a heavy toll by ushering in acute terrestrial water scarcity. Its ramifications reverberate most acutely within the agricultural heartlands, particularly those nestled in arid regions. To address this pressing issue, this study harnesses the temperature vegetation dryness index (TVDI) as a robust drought indicator, enabling a granular estimation of land water content trends. This endeavor unfolds through the sophisticated integration of geographic information systems (GISs) and remote sensing technologies (RSTs). The methodology bedrock lies in the judicious utilization of 72 high-resolution satellite images captured by the Landsat 7 and 8 platforms. These images serve as the foundational building blocks for computing TVDI values, a key metric that encapsulates the dynamic interplay between the normalized difference vegetation index (NDVI) and the land surface temperature (LST). The findings resonate with significance, unveiling a conspicuous and statistically significant uptick in the TVDI time series. This shift, observed at a confidence level of 0.05 (Z S = 1.648), raises a crucial alarm. Remarkably, this notable surge in the TVDI exists in tandem with relatively insignificant upticks in short-term precipitation rates and LST, at statistically comparable significance levels. The implications are both pivotal and starkly clear: this profound upswing in the TVDI within agricultural domains harbors tangible environmental threats, particularly to groundwater resources, which form the lifeblood of these regions. The call to action resounds strongly, imploring judicious water management practices and a conscientious reduction in water withdrawal from reservoirs. These measures, embraced in unison, represent the imperative steps needed to defuse the looming crisis.

Suggested Citation

  • A A Alazba & Amr Mossad & Hatim M. E. Geli & Ahmed El-Shafei & Ahmed Elkatoury & Mahmoud Ezzeldin & Nasser Alrdyan & Farid Radwan, 2025. "Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis," Land, MDPI, vol. 14(6), pages 1-26, June.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1302-:d:1681975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/6/1302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/6/1302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Sanusi Shiru & Shamsuddin Shahid & Noraliani Alias & Eun-Sung Chung, 2018. "Trend Analysis of Droughts during Crop Growing Seasons of Nigeria," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    2. Janna Frischen & Isabel Meza & Daniel Rupp & Katharina Wietler & Michael Hagenlocher, 2020. "Drought Risk to Agricultural Systems in Zimbabwe: A Spatial Analysis of Hazard, Exposure, and Vulnerability," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    3. Huaijun Wang & Zhi Li & Lei Cao & Ru Feng & Yingping Pan, 2021. "Response of NDVI of Natural Vegetation to Climate Changes and Drought in China," Land, MDPI, vol. 10(9), pages 1-24, September.
    4. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    4. Brian C. Thiede & Abbie Robinson & Clark Gray, 2024. "Climatic Variability and Internal Migration in Asia: Evidence from Big Microdata," Population and Development Review, The Population Council, Inc., vol. 50(2), pages 513-540, June.
    5. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    6. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    7. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    8. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    9. Linfang Chen & Huanyu Sun & Shenghui Zhou & Shixing Jiao & Xiao Zhao & Jianmei Cheng, 2024. "Analysis of Resource Misallocation and Total Factor Productivity Losses in Green Agriculture: A Case Study of the North China Region," Sustainability, MDPI, vol. 17(1), pages 1-25, December.
    10. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    11. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    12. Mengmeng Gao & Nan Yang & Qiong Liu, 2024. "What Drives Vegetation Evolution in the Middle Reaches of the Yellow River Basin, Climate Change or Human Activities?," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    13. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.
    14. repec:osf:socarx:hxv35_v1 is not listed on IDEAS
    15. Thiede, Brian C. & Robinson, Abbie & Gray, Clark, 2022. "Climatic Variability and Internal Migration in Asia: Evidence from Integrated Census and Survey Microdata," SocArXiv hxv35, Center for Open Science.
    16. Xiaojia Bao, 2016. "Water, Electricity and Weather Variability in Rural Northern China," Working Papers 2014-07-02, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    17. Chris M. Foggin & Laura E. Rosen & Marijke M. Henton & Angela Buys & Toby Floyd & Andrew D. Turner & Jonathan Tarbin & Antony S. Lloyd & Columbas Chaitezvi & Richard J. Ellis & Helen C. Roberts & Akba, 2023. "Pasteurella sp. associated with fatal septicaemia in six African elephants," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Omolola M. Adisa & Muthoni Masinde & Joel O. Botai & Christina M. Botai, 2020. "Bibliometric Analysis of Methods and Tools for Drought Monitoring and Prediction in Africa," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    19. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    20. Tao Long & Yonghong Wang & Yunchao Jiang & Yun Zhang & Bo Wang, 2025. "Spatiotemporal Evolution and Driving Factors of NPP in the LanXi Urban Agglomeration from 2000 to 2023," Sustainability, MDPI, vol. 17(13), pages 1-21, June.
    21. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1302-:d:1681975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.