IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i6p1287-d1680158.html
   My bibliography  Save this article

A Framework for Multifunctional Green Infrastructure Planning Based on Ecosystem Service Synergy/Trade-Off Analysis: Application in the Qinling–Daba Mountain Area

Author

Listed:
  • Mingjie Song

    (College of Public Administration, Central China Normal University, Wuhan 430079, China)

  • Shicheng Li

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Basanta Paudel

    (Southasia Institute of Advanced Studies, Kathmandu 44600, Nepal
    Nepal Mountain Academy, Tribhuvan University, Kathmandu 44613, Nepal)

  • Fangjie Pan

    (School of Management, Wuhan Institute of Technology, Wuhan 430205, China)

Abstract

The multifunctionality of green infrastructure (GI) can be enhanced through intentional planning that promotes synergies among various functions while minimizing trade-offs. Despite its significance, methodologies for implementing this approach remain underexplored. This paper presents an application-oriented framework for GI planning that emphasizes the relationship between GI functional performance and the provision of ecosystem services. By reframing the issues of multifunctional synergies and trade-offs as quantifiable and spatially explicit problems associated with ecosystem services, the framework offers both a conceptual foundation and technical protocols for practical application. This framework was implemented in the Qinling–Daba Mountain Area (QDMB) in China to evaluate its practicality and identify potential challenges. The planned GI system aims to fulfill multiple functions, including biodiversity maintenance, water and soil conservation, eco-farming, and ecotourism development. Additionally, 73 wildlife corridors were established to connect GI elements, thereby enhancing habitat services for biodiversity. Furthermore, the analysis identified 245 townships and 273 sites as strategic areas and points requiring targeted intervention to mitigate potential multifunctional trade-offs. These locations are characterized by their location within protected areas, protected buffer zones, or wildlife corridors, or at the intersection of wildlife corridors with existing transportation infrastructure. The findings validate the framework’s practicality and highlight the necessity for additional research into the capacity of GI to support diverse human activities and the approaches to enhance GI elements’ connectivity for multifunctionality.

Suggested Citation

  • Mingjie Song & Shicheng Li & Basanta Paudel & Fangjie Pan, 2025. "A Framework for Multifunctional Green Infrastructure Planning Based on Ecosystem Service Synergy/Trade-Off Analysis: Application in the Qinling–Daba Mountain Area," Land, MDPI, vol. 14(6), pages 1-22, June.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1287-:d:1680158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/6/1287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/6/1287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Connop, Stuart & Vandergert, Paula & Eisenberg, Bernd & Collier, Marcus J. & Nash, Caroline & Clough, Jack & Newport, Darryl, 2016. "Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure," Environmental Science & Policy, Elsevier, vol. 62(C), pages 99-111.
    2. Wang, Aijia & Wang, Junqi & Zhang, Ruijun & Cao, Shi-Jie, 2024. "Mitigating urban heat and air pollution considering green and transportation infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    3. Katherine Murkin & Narushige Shiode & Shino Shiode & David Kidd, 2023. "Biodiversity and the Recreational Value of Green Infrastructure in England," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    4. Yingzhuo Zhang & Haoran Yin & Lianqi Zhu & Changhong Miao, 2021. "Landscape Fragmentation in Qinling–Daba Mountains Nature Reserves and Its Influencing Factors," Land, MDPI, vol. 10(11), pages 1-20, October.
    5. Arthur Getis & J. Keith Ord, 2010. "The Analysis of Spatial Association by Use of Distance Statistics," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 127-145, Springer.
    6. Evans, D.L. & Falagán, N. & Hardman, C.A. & Kourmpetli, S. & Liu, L. & Mead, B.R. & Davies, J.A.C., 2022. "Ecosystem service delivery by urban agriculture and green infrastructure – a systematic review," Ecosystem Services, Elsevier, vol. 54(C).
    7. Vittorio Serra & Sara Defraia & Antonio Ledda & Giovanna Calia & Federico Corona & Andrea De Montis & Maurizio Mulas, 2025. "Ecological Network, Ecosystem Services, and Green Infrastructure Planning: A Method for the Metropolitan City of Cagliari, Italy," Networks and Spatial Economics, Springer, vol. 25(1), pages 95-120, March.
    8. Seiwert, Anne & Rößler, Stefanie, 2020. "Understanding the term green infrastructure: origins, rationales, semantic content and purposes as well as its relevance for application in spatial planning," Land Use Policy, Elsevier, vol. 97(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Ronael & Tüzin Baycan, 2022. "Place-based factors affecting COVID-19 incidences in Turkey," Asia-Pacific Journal of Regional Science, Springer, vol. 6(3), pages 1053-1086, October.
    2. Felipe Santos‐Marquez & Carlos Mendez, 2021. "Regional convergence, spatial scale, and spatial dependence: Evidence from homicides and personal injuries in Colombia 2010–2018," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(4), pages 1162-1184, August.
    3. Jianwei Qi & Yayan Lu & Fang Han & Xuankai Ma & Zhaoping Yang, 2022. "Spatial Distribution Characteristics of the Rural Tourism Villages in the Qinghai-Tibetan Plateau and Its Influencing Factors," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    4. Joconiah Chirenda & Isaiah Gwitira & Robin M Warren & Samantha L Sampson & Amon Murwira & Collen Masimirembwa & Kudzanai M Mateveke & Cremence Duri & Prosper Chonzi & Simbarashe Rusakaniko & Elizabeth, 2020. "Spatial distribution of Mycobacterium Tuberculosis in metropolitan Harare, Zimbabwe," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-16, April.
    5. Jiao Zhang & Qian Wang & Yiping Xia & Katsunori Furuya, 2022. "Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace," Land, MDPI, vol. 11(3), pages 1-24, February.
    6. María-Jesús Perles & Juan F. Sortino & Matías F. Mérida, 2021. "The Neighborhood Contagion Focus as a Spatial Unit for Diagnosis and Epidemiological Action against COVID-19 Contagion in Urban Spaces: A Methodological Proposal for Its Detection and Delimitation," IJERPH, MDPI, vol. 18(6), pages 1-24, March.
    7. Melissa Vogt, 2025. "Refined Wilding and Functional Biodiversity in Smart Cities for Improved Sustainable Urban Development," Land, MDPI, vol. 14(6), pages 1-36, June.
    8. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    9. Jifei Zhang & Shuai Zhang, 2022. "Assessing Integrated Effectiveness of Rural Socio-Economic Development and Environmental Protection of Wenchuan County in Southwestern China: An Approach Using Game Theory and VIKOR," Land, MDPI, vol. 11(11), pages 1-17, October.
    10. Hamidreza Rabiei-Dastjerdi & Gavin McArdle, 2021. "Novel Exploratory Spatiotemporal Analysis to Identify Sociospatial Patterns at Small Areas Using Property Transaction Data in Dublin," Land, MDPI, vol. 10(6), pages 1-16, May.
    11. Yifang Wang & Linlin Cheng & Yang Zheng, 2023. "An Adjusted Landscape Ecological Security of Cultivated Land Evaluation Method Based on the Interaction between Cultivated Land and Surrounding Land Types," Land, MDPI, vol. 12(4), pages 1-20, April.
    12. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    13. Michael Manton & Evaldas Makrickas & Piotr Banaszuk & Aleksander Kołos & Andrzej Kamocki & Mateusz Grygoruk & Marta Stachowicz & Leonas Jarašius & Nerijus Zableckis & Jūratė Sendžikaitė & Jan Peters &, 2021. "Assessment and Spatial Planning for Peatland Conservation and Restoration: Europe’s Trans-Border Neman River Basin as a Case Study," Land, MDPI, vol. 10(2), pages 1-27, February.
    14. Xiaofang Chen & Wenlei Xia & Yuan Huang & Mingze Li & Wei Wan, 2021. "Evolution of the Spatial Pattern of the Assets and Environmental Liabilities Conversion Rate and Its Influencing Factors," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    15. Domínguez, Alvaro & Santos-Marquez, Felipe & Mendez, Carlos, 2021. "Sectoral productivity convergence, input-output structure and network communities in Japan," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 582-599.
    16. Małgorzata Sztubecka & Alicja Maciejko & Marta Skiba, 2022. "The Landscape of the Spa Parks Creation through Components Influencing Environmental Perception Using Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    17. Fatma Zeren & Veli Yilanci, 2020. "Analysing Spatial Patterns of the COVID-19 Outbreak in Turkey," Bingol University Journal of Economics and Administrative Sciences, Bingol University, Faculty of Economics and Administrative Sciences, vol. 4(2), pages 27-40, December.
    18. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    19. Amir Haghverdi & Brian Leib & Robert Washington-Allen & Wesley C. Wright & Somayeh Ghodsi & Timothy Grant & Muzi Zheng & Phue Vanchiasong, 2019. "Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region," Agriculture, MDPI, vol. 9(2), pages 1-21, February.
    20. Tonglin Zhang & Ge Lin, 2008. "Identification of local clusters for count data: a model-based Moran's I test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 293-306.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1287-:d:1680158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.