IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p874-d1635793.html
   My bibliography  Save this article

Measuring and Modeling Soil Carbon Changes on Dutch Dairy Farms

Author

Listed:
  • René Schils

    (Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands)

  • Colin Dekker

    (Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands)

  • Jouke Oenema

    (Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands)

  • Gerjan Hilhorst

    (Agro-Innovation Centre De Marke, Roessinkweg 2, 7255 PC Hengelo, The Netherlands)

  • Jan-Paul Wagenaar

    (Louis Bolk Institute, Kosterijland 3-5, 3981 AJ Bunnik, The Netherlands)

  • Koos Verloop

    (Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands)

Abstract

Soil carbon sequestration is one of the pathways for the dairy sector to mitigate climate change. Soil carbon measures have been reviewed extensively, including estimates of their impacts on regional or national scales. Eventually, these measures are to be implemented by the farmers themselves, justifying an assessment at farm and field level. Here, we used soil and management data from 96 fields on nine dairy farms to quantify annual stock changes under current management and the effect of several carbon measures on soil carbon sequestration in relation to farm configurations. The fields were in use as permanent grassland or grass-arable rotation with forage maize or other crops. We compared the observed changes in the soil layer of 0–25 cm with the RothC simulated changes, and we also simulated the effect of carbon measures on soil carbon stocks. We found a moderate (R 2 = 0.30) relation between simulated and measured soil carbon changes. Factors that contribute to the uncertainties are the estimates of field-specific carbon inputs from crop residues and manures, especially for farms that temporarily exchange land with other farmers. The current standard agronomic soil sampling program is unable to reliably detect soil carbon changes at a farm or field level. The annual changes in simulated soil carbon were negatively related to the initials carbon stocks, which has important implications for the potential of additional carbon storage. Therefore, we propose an indicator that expresses the current soil carbon stock in relation to the location-specific maximal achievable carbon stock for permanent grassland that receives an equivalent of 170 kg nitrogen per ha per year from animal manure. This can be used to compare farms and indicate whether a farmer’s focus should be on additional carbon storage or the protection of existing stocks. The simulation of carbon measures showed that the proportion of grassland is key in soil carbon storage.

Suggested Citation

  • René Schils & Colin Dekker & Jouke Oenema & Gerjan Hilhorst & Jan-Paul Wagenaar & Koos Verloop, 2025. "Measuring and Modeling Soil Carbon Changes on Dutch Dairy Farms," Land, MDPI, vol. 14(4), pages 1-14, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:874-:d:1635793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Montanarella, Luca & Panagos, Panos, 2021. "The relevance of sustainable soil management within the European Green Deal," Land Use Policy, Elsevier, vol. 100(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    2. Tomasz Jałowiec & Henryk Wojtaszek, 2021. "Analysis of the RES Potential in Accordance with the Energy Policy of the European Union," Energies, MDPI, vol. 14(19), pages 1-33, September.
    3. Marek Zieliński & Piotr Koza & Artur Łopatka, 2022. "Agriculture from Areas Facing Natural or Other Specific Constraints (ANCs) in Poland, Its Characteristics, Directions of Changes and Challenges in the Context of the European Green Deal," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    4. Daniela Bona & Andrea Cristoforetti & Roberto Zanzotti & Daniela Bertoldi & Nicole Dellai & Silvia Silvestri, 2022. "Matured Manure and Compost from the Organic Fraction of Solid Waste Digestate Application in Intensive Apple Orchards," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    5. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    6. Jonas Volungevicius & Kristina Amaleviciute-Volunge, 2023. "A Conceptual Approach to the Histosols Profile Morphology as a Risk Indicator in Assessing the Sustainability of Their Use and Impact on Climate Change," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    7. Teresa Rodríguez-Espinosa & Jose Navarro-Pedreño & Ignacio Gómez Lucas & María Belén Almendro Candel & Ana Pérez Gimeno & Manuel Jordán Vidal & Iliana Papamichael & Antonis A. Zorpas, 2022. "Environmental Risk from Organic Residues," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    8. Barbara Breza-Boruta & Justyna Bauza-Kaszewska, 2023. "Effect of Microbial Preparation and Biomass Incorporation on Soil Biological and Chemical Properties," Agriculture, MDPI, vol. 13(5), pages 1-19, April.
    9. Stefan Krajewski & Jan Žukovskis & Dariusz Gozdowski & Marek Cieśliński & Elżbieta Wójcik-Gront, 2024. "Evaluating the Path to the European Commission’s Organic Agriculture Goal: A Multivariate Analysis of Changes in EU Countries (2004–2021) and Socio-Economic Relationships," Agriculture, MDPI, vol. 14(3), pages 1-18, March.
    10. Aldo Dal Prà & Francesca Ugolini & Martino Negri & Sara Bortolu & Pierpaolo Duce & Cristina Macci & Andrea Lombardo & Martina Benedetti & Giovanni Brajon & Lucia Guazzini & Stefano Casini & Sara Spagn, 2024. "Wool Agro-Waste Biomass and Spruce Sawdust: Pellets as an Organic Soil Amendment," Sustainability, MDPI, vol. 16(6), pages 1-14, March.
    11. Orestis Kairis & Chrysoula Aratzioglou & Athanasios Filis & Michel van Mol & Costas Kosmas, 2021. "The Effect of Land Management Practices on Soil Quality Indicators in Crete," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    12. Jagoda Zmyślona & Arkadiusz Sadowski & Natalia Genstwa, 2023. "Plant Protection and Fertilizer Use Efficiency in Farms in a Context of Overinvestment: A Case Study from Poland," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    13. Carina Lackmann & Antonio Šimić & Sandra Ečimović & Alma Mikuška & Thomas-Benjamin Seiler & Henner Hollert & Mirna Velki, 2023. "Subcellular Responses and Avoidance Behavior in Earthworm Eisenia andrei Exposed to Pesticides in the Artificial Soil," Agriculture, MDPI, vol. 13(2), pages 1-15, January.
    14. Gyula Nagy & Soma Ádám Heiner & Zoltán Kovács, 2025. "Exploring the Presence and Absence of Academic Discourse on Public Participation in the European Green Deal: A Central and Eastern European Perspective," Societies, MDPI, vol. 15(3), pages 1-24, February.
    15. Marinos Stylianou & Iliana Papamichael & Irene Voukkali & Michail Tsangas & Michalis Omirou & Ioannis M. Ioannides & Antonis A. Zorpas, 2023. "LCA of Barley Production: A Case Study from Cyprus," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    16. Sartori, Martina & Ferrari, Emanuele & M'Barek, Robert & Philippidis, George & Boysen-Urban, Kirsten & Borrelli, Pasquale & Montanarella, Luca & Panagos, Panos, 2024. "Remaining Loyal to Our Soil: A Prospective Integrated Assessment of Soil Erosion on Global Food Security," Ecological Economics, Elsevier, vol. 219(C).
    17. Hao Li & Yi Chen & Wei-Yew Chang, 2023. "Place Attachment, Self-Efficacy, and Farmers’ Farmland Quality Protection Behavior: Evidence from China," Land, MDPI, vol. 12(9), pages 1-19, September.
    18. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    19. Demirdogen, Alper & Guldal, Huseyin Tayyar & Sanli, Hasan, 2023. "Monoculture, crop rotation policy, and fire," Ecological Economics, Elsevier, vol. 203(C).
    20. Michał Kozłowski & Krzysztof Otremba & Marek Pająk & Marcin Pietrzykowski, 2023. "Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland," Sustainability, MDPI, vol. 15(9), pages 1-18, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:874-:d:1635793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.