IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p799-d1629937.html
   My bibliography  Save this article

Enhancing Post-Disaster Food Security Through Urban Agriculture in the Context of Climate Change

Author

Listed:
  • Yanxin Liu

    (Wellington School of Architecture, Victoria University of Wellington, Wellington 6011, New Zealand)

  • Victoria Chanse

    (Wellington School of Architecture, Victoria University of Wellington, Wellington 6011, New Zealand)

  • Fabricio Chicca

    (Wellington School of Architecture, Victoria University of Wellington, Wellington 6011, New Zealand)

Abstract

Cities face growing challenges from climate change, including rising temperatures, extreme rainfall, and intensifying urban heat islands, resulting in significant socio-cultural costs. Urban areas are increasingly vulnerable to food insecurity during disasters, yet the potential of urban agriculture (UA) to address this challenge remains underexplored. This study focuses on Wellington, New Zealand (NZ), a region highly prone to earthquakes, to evaluate the role of UA in enhancing post-disaster food security. The study calculates vegetable self-sufficiency by mapping potential productive land, estimating vegetable yields, and assessing post-disaster food demands across multiple scenarios. Potential productive land was quantified using a reproducible GIS-based method, considering three soil-based UA types: private yards, communal gardens, and urban farms. Due to Wellington’s mountainous topography, slopes and aspects were used to select four land scenarios. Three yield scenarios were estimated using aggregated data from previous studies and cross-checked with local UA and NZ conventional farming data. Food demands were based on NZ’s recommended vegetable intake and three targeted population scenarios: the entire population, displaced populations, and vulnerable populations. Results indicate that potential productive land is primarily evenly distributed in the eastern part within the city boundary, accounting for 0.3% to 1.5% of the total area. Vegetable self-sufficient rates for Wellington through UA range from 3% to 75%, with higher rates for displaced and vulnerable populations. These figures significantly exceed the current self-sufficiency rate estimated in the authors’ preliminary research, indicating Wellington’s considerable potential to enhance post-disaster food security through expanding UA and promoting related initiatives. However, realizing this potential will require stronger policy support, integrating UA with urban planning and disaster preparedness.

Suggested Citation

  • Yanxin Liu & Victoria Chanse & Fabricio Chicca, 2025. "Enhancing Post-Disaster Food Security Through Urban Agriculture in the Context of Climate Change," Land, MDPI, vol. 14(4), pages 1-24, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:799-:d:1629937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgia Csortan & James Ward & Philip Roetman, 2020. "Productivity, resource efficiency and financial savings: An investigation of the current capabilities and potential of South Australian home food gardens," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-26, April.
    2. Giulia Lucertini & Gianmarco Di Giustino, 2021. "Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    3. Giles Bruno Sioen & Toru Terada & Makiko Sekiyama & Makoto Yokohari, 2018. "Resilience with Mixed Agricultural and Urban Land Uses in Tokyo, Japan," Sustainability, MDPI, vol. 10(2), pages 1-27, February.
    4. Ghosh, Sumita, 2021. "Urban agriculture potential of home gardens in residential land uses: A case study of regional City of Dubbo, Australia," Land Use Policy, Elsevier, vol. 109(C).
    5. Mcdougall, Robert & Rader, Romina & Kristiansen, Paul, 2020. "Urban agriculture could provide 15% of food supply to Sydney, Australia, under expanded land use scenarios," Land Use Policy, Elsevier, vol. 94(C).
    6. Silvio Caputo & Victoria Schoen & Chris Blythe, 2023. "Productivity and Efficiency of Community Gardens: Case Studies from the UK," Land, MDPI, vol. 12(1), pages 1-19, January.
    7. Kathrin Specht & Rosemarie Siebert & Ina Hartmann & Ulf Freisinger & Magdalena Sawicka & Armin Werner & Susanne Thomaier & Dietrich Henckel & Heike Walk & Axel Dierich, 2014. "Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(1), pages 33-51, March.
    8. Conk, S.J. & Porter, C.M., 2016. "Food gardeners' productivity in laramie, Wyoming: More than a hobby," American Journal of Public Health, American Public Health Association, vol. 106(5), pages 854-856.
    9. Shuyu Han & Minakshi Keeni & Katsuhito Fuyuki, 2024. "The relationship between disaster resilience and household food security in a disaster-prone area in Kumamoto prefecture, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10119-10140, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goździewicz-Biechońska, Justyna & Brzezińska-Rawa, Anna, 2022. "Protecting ecosystem services of urban agriculture against land-use change using market-based instruments. A Polish perspective," Land Use Policy, Elsevier, vol. 120(C).
    2. Leena Erälinna & Barbara Szymoniuk, 2021. "Managing a Circular Food System in Sustainable Urban Farming. Experimental Research at the Turku University Campus (Finland)," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    3. Devi Buehler & Ranka Junge, 2016. "Global Trends and Current Status of Commercial Urban Rooftop Farming," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    4. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    5. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    6. Jeroen Degerickx & Martin Hermy & Ben Somers, 2020. "Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    7. Ryan Cronin & Anthony Halog, 2022. "A Unique Perspective of Materials, Practices and Structures Within the Food, Energy and Water Nexus of Australian Urban Alternative Food Networks," Circular Economy and Sustainability, Springer, vol. 2(1), pages 327-349, March.
    8. Garrett M. Broad & Wythe Marschall & Maya Ezzeddine, 2022. "Perceptions of high-tech controlled environment agriculture among local food consumers: using interviews to explore sense-making and connections to good food," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 417-433, March.
    9. Marian Gil & Mariusz Rudy & Paulina Duma-Kocan & Renata Stanisławczyk & Anna Krajewska & Dariusz Dziki & Waleed H. Hassoon, 2024. "Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review," Sustainability, MDPI, vol. 16(17), pages 1-27, September.
    10. Mário Santos & Helena Moreira & João Alexandre Cabral & Ronaldo Gabriel & Andreia Teixeira & Rita Bastos & Alfredo Aires, 2022. "Contribution of Home Gardens to Sustainable Development: Perspectives from A Supported Opinion Essay," IJERPH, MDPI, vol. 19(20), pages 1-26, October.
    11. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Xuepeng Shi & Chengfei Shi & Abel Tablada & Xiaoyu Guan & Mingfeng Cui & Yangxiao Rong & Qiqi Zhang & Xudong Xie, 2025. "A Review of Research Progress in Vertical Farming on Façades: Design, Technology, and Benefits," Sustainability, MDPI, vol. 17(3), pages 1-46, January.
    13. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    14. Li-Chun Huang, 2019. "Consumer Attitude, Concerns, and Brand Acceptance for the Vegetables Cultivated with Sustainable Plant Factory Production Systems," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    15. Dean Bradley Carson & Albert Brunet Johansson & Doris Anna Carson, 2024. "Who Gives? Non-Commercial Distribution Networks in Domestic Food Production in the Inland North of Sweden," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    16. Monica Allaby & Graham K. MacDonald & Sarah Turner, 2021. "Growing pains: Small-scale farmer responses to an urban rooftop farming and online marketplace enterprise in Montréal, Canada," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(3), pages 677-692, September.
    17. Casanova Enault, Laure & Popoff, Tatiana & Debolini, Marta, 2021. "Vacant lands on French Mediterranean coastlines: Inventory, agricultural opportunities, and prospective scenarios," Land Use Policy, Elsevier, vol. 100(C).
    18. Wim Schwerdtner & Rosemarie Siebert & Maria Busse & Ulf B. Freisinger, 2015. "Regional Open Innovation Roadmapping: A New Framework for Innovation-Based Regional Development," Sustainability, MDPI, vol. 7(3), pages 1-21, February.
    19. Ram Adhikari & Dawood Beyragh & Majid Pahlevani & David Wood, 2020. "A Numerical and Experimental Study of a Novel Heat Sink Design for Natural Convection Cooling of LED Grow Lights," Energies, MDPI, vol. 13(16), pages 1-19, August.
    20. Nolwazi Zanele Khumalo & Melusi Sibanda, 2019. "Does Urban and Peri-Urban Agriculture Contribute to Household Food Security? An Assessment of the Food Security Status of Households in Tongaat, eThekwini Municipality," Sustainability, MDPI, vol. 11(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:799-:d:1629937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.