IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p621-d1612826.html
   My bibliography  Save this article

Evaluation of Urban Flood Susceptibility Under the Influence of Urbanization Based on Shared Socioeconomic Pathways

Author

Listed:
  • Xiaoping Fu

    (Ecological Civilization Collaborative Innovation Center, Hainan University, Haikou 570228, China)

  • Fangyan Xue

    (Ecological Civilization Collaborative Innovation Center, Hainan University, Haikou 570228, China)

  • Yunan Liu

    (Ecological Civilization Collaborative Innovation Center, Hainan University, Haikou 570228, China
    School of Computing and Artificial Intelligence, Hainan College of Software Technology, Qionghai 571400, China
    Hainan Provincial Engineering Research Center for Spatial Data Application, Hainan College of Software Technology, Qionghai 571400, China)

  • Furong Chen

    (Department of Construction Economics and Management, Guangzhou Urban Construction Vocational School, Guangzhou 510006, China)

  • Hao Yang

    (Ecological Civilization Collaborative Innovation Center, Hainan University, Haikou 570228, China)

Abstract

Urban flood susceptibility has emerged as a critical challenge for cities worldwide, exacerbated by rapid urbanization. This study evaluates urban flood susceptibility under different Shared Socioeconomic Pathways (SSPs) in the context of urbanization. A coupled modeling approach integrating the System Dynamics (SD) model and the Future Land Use Simulation (FLUS) model was employed to project future land use changes under sustainable development, moderate development, and conventional development scenarios. Additionally, an XGBoost model was developed to assess urban flood susceptibility. The results indicate that urban construction land will continue to increase over the next 30 years, with the extent of growth varying across different scenarios. Notably, under the conventional development scenario, rapid economic growth leads to a significant expansion of built-up land and a sharp decline in ecological land, which in turn exacerbates the urban flood susceptibility. Consequently, urban flood susceptibility is projected to increase across all three scenarios, albeit at varying rates. Specifically, under the sustainable development scenario, 27% of Guangzhou is projected to face high flood risk. In the moderate development scenario, the area classified as high-risk increased by 868.73 km 2 . Under the conventional development scenario, the high-risk area expanded from 1282.9 km 2 in 2020 to 2761.33 km 2 , representing a 16% increase. These differences are primarily attributed to changes in land use, which alter surface runoff and subsequently enhance the city’s vulnerability to waterlogging. This study provides a comprehensive framework for assessing urban flood susceptibility in the context of urbanization, offering valuable insights for formulating targeted flood prevention and mitigation strategies.

Suggested Citation

  • Xiaoping Fu & Fangyan Xue & Yunan Liu & Furong Chen & Hao Yang, 2025. "Evaluation of Urban Flood Susceptibility Under the Influence of Urbanization Based on Shared Socioeconomic Pathways," Land, MDPI, vol. 14(3), pages 1-20, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:621-:d:1612826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Wang & Yabo Li & Yuhu Zhang, 2021. "An urban system perspective on urban flood resilience using SEM: evidence from Nanjing city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2575-2599, December.
    2. Sado-Inamura, Yukako & Fukushi, Kensuke, 2019. "Empirical analysis of flood risk perception using historical data in Tokyo," Land Use Policy, Elsevier, vol. 82(C), pages 13-29.
    3. Wolf, J. & Bindraban, P. S. & Luijten, J. C. & Vleeshouwers, L. M., 2003. "Exploratory study on the land area required for global food supply and the potential global production of bioenergy," Agricultural Systems, Elsevier, vol. 76(3), pages 841-861, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weizhong Su & Gaobin Ye, 2014. "Differences of Soil Fertility in Farmland Occupation and Supplement Areas in the Taihu Lake Watershed during 1985–2010," IJERPH, MDPI, vol. 11(6), pages 1-15, May.
    2. Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
    3. Russi, Daniela, 2008. "An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone?," Energy Policy, Elsevier, vol. 36(3), pages 1169-1180, March.
    4. Ruikun Peng & Yinyin Zhao & Ehsan Elahi & Benhong Peng, 2021. "Does disaster shocks affect farmers’ willingness for insurance? Mediating effect of risk perception and survey data from risk-prone areas in East China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2883-2899, April.
    5. Qian Gu & Fuxin Chai & Wenbin Zang & Hongping Zhang & Xiaoli Hao & Huimin Xu, 2025. "A Two-Level Early Warning System on Urban Floods Caused by Rainstorm," Sustainability, MDPI, vol. 17(5), pages 1-16, March.
    6. Milazzo, M.F. & Spina, F. & Vinci, A. & Espro, C. & Bart, J.C.J., 2013. "Brassica biodiesels: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 350-389.
    7. Xinghua Feng & Chunliang Xiu & Jianxin Li & Yexi Zhong, 2021. "Measuring the Evolution of Urban Resilience Based on the Exposure–Connectedness–Potential (ECP) Approach: A Case Study of Shenyang City, China," Land, MDPI, vol. 10(12), pages 1-22, November.
    8. Chiang Hsieh, Lin-Han, 2021. "Is it the flood, or the disclosure? An inquiry to the impact of flood risk on residential housing prices," Land Use Policy, Elsevier, vol. 106(C).
    9. Shanzhong Qi & Shufen Cao & Shunli Hu & Qian Liu, 2024. "Bibliometric analysis on urban flood and waterlogging disasters during the period of 1998—2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12595-12612, November.
    10. Chun-Hsien Lai & Pi-Ching Liao & Szu-Hung Chen & Yung-Chieh Wang & Chingwen Cheng & Chen-Fa Wu, 2021. "Risk Perception and Adaptation of Climate Change: An Assessment of Community Resilience in Rural Taiwan," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    11. Yang, Jingna & Zhou, Kaile & Hu, Rong, 2024. "City-level resilience assessment of integrated energy systems in China," Energy Policy, Elsevier, vol. 193(C).
    12. Xuehua Han & Liang Wang & Dandan Xu & He Wei & Xinghua Zhang & Xiaodong Zhang, 2022. "Research Progress and Framework Construction of Urban Resilience Computational Simulation," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    13. Avashia, Vidhee & Garg, Amit, 2020. "Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities," Land Use Policy, Elsevier, vol. 95(C).
    14. Dingyang Zhou & Hirotaka Matsuda & Yuji Hara & Kazuhiko Takeuchi, 2012. "Potential and observed food flows in a Chinese city: a case study of Tianjin," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 29(4), pages 481-492, December.
    15. Zhihui Li & Xiangzheng Deng & Xi Chu & Gui Jin & Wei Qi, 2019. "An Outlook on the Biomass Energy Development Out to 2100 in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1359-1377, December.
    16. Yoshiki B. Kurata & Ardvin Kester S. Ong & Ranice Ysabelle B. Ang & John Karol F. Angeles & Bianca Danielle C. Bornilla & Justine Lian P. Fabia, 2023. "Factors Affecting Flood Disaster Preparedness and Mitigation in Flood-Prone Areas in the Philippines: An Integration of Protection Motivation Theory and Theory of Planned Behavior," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    17. Alena V. Kadetova & Yan B. Radziminovich, 2020. "Historical floods within the Selenga river basin: chronology and extreme events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 579-598, August.
    18. Peng Wang & Yifan Zhu & Ping Yu, 2022. "Assessment of Urban Flood Vulnerability Using the Integrated Framework and Process Analysis: A Case from Nanjing, China," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    19. Prem S. Bindraban & Rudy Rabbinge, 2011. "European food and agricultural strategy for 21st century," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 9(1/2), pages 80-101.
    20. Ruth Offermann & Thilo Seidenberger & Daniela Thrän & Martin Kaltschmitt & Sergey Zinoviev & Stanislav Miertus, 2011. "Assessment of global bioenergy potentials," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(1), pages 103-115, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:621-:d:1612826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.