IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p527-d1604326.html
   My bibliography  Save this article

Climate Change Amplifies the Effects of Vegetation Restoration on Evapotranspiration and Water Availability in the Beijing–Tianjin Sand Source Region, Northern China

Author

Listed:
  • Xiaoyong Li

    (School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China)

  • Yan Lv

    (School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China)

  • Wenfeng Chi

    (College of Resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
    Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Hohhot 010070, China)

  • Zhongen Niu

    (College of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China)

  • Zihao Bian

    (School of Geography, Nanjing Normal University, Nanjing 210023, China)

  • Jing Wang

    (State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

Abstract

Evapotranspiration (ET) and water availability (WA) are critical components of the global water cycle. Although the effects of ecological restoration on ET and WA have been widely investigated, quantifying the impacts of multiple environmental factors on plant water consumption and regional water balance in dryland areas remains challenging. In this study, we investigated the spatial and temporal trends of ET and WA and isolated the contributions of vegetation restoration and climate change to variations in ET and WA in the Beijing–Tianjin Sand Source Region (BTSSR) in Northern China from 2001 to 2021, using the remote sensing-based Priestley–Taylor-Jet Propulsion Laboratory (PT-JPL) model and scenario simulation experiments. The results indicate that the estimated ET was consistent with field observations and state-of-the-art ET products. The annual ET in the BTSSR increased significantly by 1.28 mm yr −1 from 2001 to 2021, primarily driven by vegetation restoration (0.78 mm yr −1 ) and increased radiation (0.73 mm yr −1 ). In contrast, the drier climate led to a decrease of 0.56 mm yr −1 in ET. In semiarid areas, vegetation and radiation were the dominant factors driving the variability of ET, while in arid areas, relative humidity played a more critical role. Furthermore, reduced precipitation and increased plant water consumption resulted in a decline in WA by −0.91 mm yr −1 during 2001–2021. Climate factors, rather than vegetation greening, determined the WA variations in the BTSSR, accounting for 77.6% of the total area. These findings can provide valuable insights for achieving sustainable ecological restoration and ensuring the sustainability of regional water resources in dryland China under climate change. This study also highlights the importance of simultaneously considering climate change and vegetation restoration in assessing their negative impacts on regional water availability.

Suggested Citation

  • Xiaoyong Li & Yan Lv & Wenfeng Chi & Zhongen Niu & Zihao Bian & Jing Wang, 2025. "Climate Change Amplifies the Effects of Vegetation Restoration on Evapotranspiration and Water Availability in the Beijing–Tianjin Sand Source Region, Northern China," Land, MDPI, vol. 14(3), pages 1-21, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:527-:d:1604326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng Zhao & Geruo A & Yanlan Liu & Alexandra G. Konings, 2022. "Evapotranspiration frequently increases during droughts," Nature Climate Change, Nature, vol. 12(11), pages 1024-1030, November.
    2. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Alexis M. Berg & Yao Zhang & Trevor F. Keenan & Benjamin I. Cook & Stefan Hagemann & Sonia I. Seneviratne & Pierre Gentine, 2021. "Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands," Nature Climate Change, Nature, vol. 11(1), pages 38-44, January.
    3. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shenglin & Han, Yang & Li, Caixia & Wang, Jinglei, 2024. "A novel framework for multi-layer soil moisture estimation with high spatio-temporal resolution based on data fusion and automated machine learning," Agricultural Water Management, Elsevier, vol. 306(C).
    2. Liu, Xuanang & Peng, Xiongbiao & Li, Yao & Gu, Xiaobo & Yu, Lianyu & Wang, Yunfei & Cai, Huanjie, 2024. "Environmental influences on evapotranspiration in wheat-maize rotation systems under diverse hydrological regimes in the Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 306(C).
    3. Gabriele Vissio & Marco Turco & Antonello Provenzale, 2023. "Testing drought indicators for summer burned area prediction in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1125-1137, March.
    4. Jinlin Li & Lanhui Zhang, 2021. "Comparison of Four Methods for Vertical Extrapolation of Soil Moisture Contents from Surface to Deep Layers in an Alpine Area," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    5. Xiao, Jing & Sun, Fubao & Wang, Tingting & Wang, Hong, 2024. "Estimation and validation of high-resolution evapotranspiration products for an arid river basin using multi-source remote sensing data," Agricultural Water Management, Elsevier, vol. 298(C).
    6. Sijia Wu & Ming Luo & Gabriel Ngar-Cheung Lau & Wei Zhang & Lin Wang & Zhen Liu & Lijie Lin & Yijing Wang & Erjia Ge & Jianfeng Li & Yuanchao Fan & Yimin Chen & Weilin Liao & Xiaoyu Wang & Xiaocong Xu, 2025. "Rapid flips between warm and cold extremes in a warming world," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    7. Yanmin Shuai & Yanjun Tian & Congying Shao & Jiapeng Huang & Lingxiao Gu & Qingling Zhang & Ruishan Zhao, 2022. "Potential Variation of Evapotranspiration Induced by Typical Vegetation Changes in Northwest China," Land, MDPI, vol. 11(6), pages 1-19, May.
    8. Hsin Hsu & Paul A. Dirmeyer, 2023. "Soil moisture-evaporation coupling shifts into new gears under increasing CO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Zhenyi Yuan & Nan Wei, 2022. "Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation," Land, MDPI, vol. 11(6), pages 1-25, May.
    10. Melo, Leonardo Leite de & Melo, Verônica Gaspar Martins Leite de & Marques, Patrícia Angélica Alves & Frizzone, Jose Antônio & Coelho, Rubens Duarte & Romero, Roseli Aparecida Francelin & Barros, Timó, 2022. "Deep learning for identification of water deficits in sugarcane based on thermal images," Agricultural Water Management, Elsevier, vol. 272(C).
    11. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Kirsten L. Findell & Trevor F. Keenan & Yao Zhang & Pierre Gentine, 2022. "Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Wantong Li & Javier Pacheco-Labrador & Mirco Migliavacca & Diego Miralles & Anne Hoek van Dijke & Markus Reichstein & Matthias Forkel & Weijie Zhang & Christian Frankenberg & Annu Panwar & Qian Zhang , 2023. "Widespread and complex drought effects on vegetation physiology inferred from space," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Miao Zhang & Xing Yuan & Zhenzhong Zeng & Ming Pan & Peili Wu & Jingfeng Xiao & Trevor F. Keenan, 2025. "A pronounced decline in northern vegetation resistance to flash droughts from 2001 to 2022," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    14. Xinyue Xie & Min Peng & Linglei Zhang & Min Chen & Jia Li & Youcai Tuo, 2024. "Assessing the Impacts of Climate and Land Use Change on Water Conservation in the Three-River Headstreams Region of China Based on the Integration of the InVEST Model and Machine Learning," Land, MDPI, vol. 13(3), pages 1-33, March.
    15. Liu, Yuqi & Wang, Aiwen & Li, Bo & Šimůnek, Jirka & Liao, Renkuan, 2024. "Combining mathematical models and machine learning algorithms to predict the future regional-scale actual transpiration by maize," Agricultural Water Management, Elsevier, vol. 303(C).
    16. Liu, Yong & Hu, Tiesong & Zhu, Rui & Chen, Qiuwen & Zeng, Xiang & Jing, Peiran & Huang, Yifan, 2025. "A stomatal optimization model integrating leaf stomata-photosynthetic capacity regulation in response to soil water stress," Agricultural Water Management, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:527-:d:1604326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.