IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001246.html
   My bibliography  Save this article

Simultaneous retrieval of soil moisture and salinity in arid and semiarid regions using Sentinel-1 data and a revised dielectric model for salty soil

Author

Listed:
  • Dong, Leilei
  • Wang, Weizhen
  • Che, Tao
  • Wang, Yuhao
  • Huang, Xin
  • Zhang, Shengyin
  • Xu, Feinan
  • Feng, Jiaojiao

Abstract

Soil moisture and salinity (SMS) are two critical factors in crop growth, and monitoring their dynamic has important scientific value and social benefits for preventing land degradation and improving land productivity. However, the current methodology treats soil moisture and salinity as two independent variables to be estimated separately, completely ignoring their joint influence on the microwave signal. In this paper, the Jingdian irrigated region, which is located in northwestern China, is selected as an example, the contents of soil volumetric water and soil salt are measured separately for different seasons in the research area, and they are also retrieved simultaneously by combining Sentinel-1 data and a revised dielectric model of salty soil. The results demonstrate that the Sentinel-1 data can achieve satisfactory results in the simultaneous retrieval of SMS, with R2 values higher than 0.53. The RMSE values in the upward track are less than 0.042 m3/m3 and 3.132 mS/cm, respectively, which are smaller than in the downward track, with the RMSE values less than 0.051 m3/m3 and 3.84 mS/cm, respectively. The average value of soil moisture content in winter is 0.17 m3/m3, which is higher than in spring, with a value of 0.21 m3/m3. The soil salt content increases gradually over the study period, with average values of 1.88 mS/cm in spring and 3.58 mS/cm in winter, respectively. In addition, vegetation, surface roughness, precipitation, and agricultural activities are the main factors affecting the simultaneous retrieval of SMS.

Suggested Citation

  • Dong, Leilei & Wang, Weizhen & Che, Tao & Wang, Yuhao & Huang, Xin & Zhang, Shengyin & Xu, Feinan & Feng, Jiaojiao, 2025. "Simultaneous retrieval of soil moisture and salinity in arid and semiarid regions using Sentinel-1 data and a revised dielectric model for salty soil," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001246
    DOI: 10.1016/j.agwat.2025.109410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Alexis M. Berg & Yao Zhang & Trevor F. Keenan & Benjamin I. Cook & Stefan Hagemann & Sonia I. Seneviratne & Pierre Gentine, 2021. "Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands," Nature Climate Change, Nature, vol. 11(1), pages 38-44, January.
    2. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Alexis M. Berg & Yao Zhang & Trevor F. Keenan & Benjamin I. Cook & Stefan Hagemann & Sonia I. Seneviratne & Pierre Gentine, 2021. "Publisher Correction: Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands," Nature Climate Change, Nature, vol. 11(3), pages 274-274, March.
    3. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shenglin & Han, Yang & Li, Caixia & Wang, Jinglei, 2024. "A novel framework for multi-layer soil moisture estimation with high spatio-temporal resolution based on data fusion and automated machine learning," Agricultural Water Management, Elsevier, vol. 306(C).
    2. Gabriele Vissio & Marco Turco & Antonello Provenzale, 2023. "Testing drought indicators for summer burned area prediction in Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1125-1137, March.
    3. Sijia Wu & Ming Luo & Gabriel Ngar-Cheung Lau & Wei Zhang & Lin Wang & Zhen Liu & Lijie Lin & Yijing Wang & Erjia Ge & Jianfeng Li & Yuanchao Fan & Yimin Chen & Weilin Liao & Xiaoyu Wang & Xiaocong Xu, 2025. "Rapid flips between warm and cold extremes in a warming world," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Hsin Hsu & Paul A. Dirmeyer, 2023. "Soil moisture-evaporation coupling shifts into new gears under increasing CO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Zhenyi Yuan & Nan Wei, 2022. "Coupling a New Version of the Common Land Model (CoLM) to the Global/Regional Assimilation and Prediction System (GRAPES): Implementation, Experiment, and Preliminary Evaluation," Land, MDPI, vol. 11(6), pages 1-25, May.
    6. Melo, Leonardo Leite de & Melo, Verônica Gaspar Martins Leite de & Marques, Patrícia Angélica Alves & Frizzone, Jose Antônio & Coelho, Rubens Duarte & Romero, Roseli Aparecida Francelin & Barros, Timó, 2022. "Deep learning for identification of water deficits in sugarcane based on thermal images," Agricultural Water Management, Elsevier, vol. 272(C).
    7. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Kirsten L. Findell & Trevor F. Keenan & Yao Zhang & Pierre Gentine, 2022. "Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Mirela Matković Stojšin & Sofija Petrović & Borislav Banjac & Veselinka Zečević & Svetlana Roljević Nikolić & Helena Majstorović & Radiša Đorđević & Desimir Knežević, 2022. "Assessment of Genotype Stress Tolerance as an Effective Way to Sustain Wheat Production under Salinity Stress Conditions," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    9. Ying Xiao & Mingliang Ye & Jing Zhang & Yamin Chen & Xinxin Sun & Xiaoyan Li & Xiaodong Song, 2025. "Significant Changes in Soil Properties in Arid Regions Due to Semicentennial Tillage—A Case Study of Tarim River Oasis, China," Sustainability, MDPI, vol. 17(9), pages 1-21, May.
    10. Kramer, Isaac & Peleg, Nadav & Mau, Yair, 2025. "Climate change shifts risk of soil salinity and land degradation in water-scarce regions," Agricultural Water Management, Elsevier, vol. 307(C).
    11. Song, Ying & Gao, Mingxiu & Wang, Jiafan, 2024. "Inversion of salinization in multilayer soils and prediction of water demand for salt regulation in coastal region," Agricultural Water Management, Elsevier, vol. 301(C).
    12. Thiam, Habibatou I. & Owusu, Victor & Villamor, Grace B. & Schuler, Johannes & Hathie, Ibrahima, 2024. "Farmers’ intention to adapt to soil salinity expansion in Fimela, Sine-Saloum area in Senegal: A structural equation modelling approach," Land Use Policy, Elsevier, vol. 137(C).
    13. Jinlin Li & Lanhui Zhang, 2021. "Comparison of Four Methods for Vertical Extrapolation of Soil Moisture Contents from Surface to Deep Layers in an Alpine Area," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    14. Hesham M. Aboelsoud & Mohamed A. E. AbdelRahman & Ahmed M. S. Kheir & Mona S. M. Eid & Khalil A. Ammar & Tamer H. Khalifa & Antonio Scopa, 2022. "Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management," Land, MDPI, vol. 11(7), pages 1-19, July.
    15. Bijnens, Gert & Anyfantaki, Sofia & Colciago, Andrea & De Mulder, Jan & Falck, Elisabeth & Labhard, Vincent & Lopez-Garcia, Paloma & Meriküll, Jaanika & Parker, Miles & Röhe, Oke & Schroth, Joachim & , 2024. "The impact of climate change and policies on productivity," Occasional Paper Series 340, European Central Bank.
    16. Denis-Constantin Țopa & Sorin Căpșună & Anca-Elena Calistru & Costică Ailincăi, 2025. "Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review," Agriculture, MDPI, vol. 15(9), pages 1-38, May.
    17. Yanmin Shuai & Yanjun Tian & Congying Shao & Jiapeng Huang & Lingxiao Gu & Qingling Zhang & Ruishan Zhao, 2022. "Potential Variation of Evapotranspiration Induced by Typical Vegetation Changes in Northwest China," Land, MDPI, vol. 11(6), pages 1-19, May.
    18. Mădălina Trușcă & Ștefania Gâdea & Roxana Vidican & Vlad Stoian & Anamaria Vâtcă & Claudia Balint & Valentina Ancuța Stoian & Melinda Horvat & Sorin Vâtcă, 2023. "Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    19. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Gonçalves, José Manuel & Li, Xianyue & Feng, Weiying & Yan, Jianwen & Yu, Dandan & Yan, Yan, 2025. "AquaCrop model-based sensitivity analysis of soil salinity dynamics and productivity under climate change in sandy-layered farmland," Agricultural Water Management, Elsevier, vol. 307(C).
    20. Lei, Guoqing & Zeng, Wenzhi & Yu, Jin & Huang, Jiesheng, 2023. "A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields," Agricultural Water Management, Elsevier, vol. 277(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.