IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p199-d1570675.html
   My bibliography  Save this article

Spatiotemporal Relationship Between Carbon Metabolism and Ecosystem Service Value in the Rural Production–Living–Ecological Space of Northeast China’s Black Soil Region: A Case Study of Bin County

Author

Listed:
  • Yajie Shang

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
    Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150040, China)

  • Yuanyuan Chen

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
    Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150040, China)

  • Yalin Zhai

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
    Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150040, China)

  • Lei Wang

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
    Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150040, China)

Abstract

Amid global climate challenges and an urgent need for ecological protection, the northeastern black soil region—one of the world’s remaining “three major black soil regions”—confronts significant tensions between agricultural economic development and land ecological protection, threatening national food security. Based on the “production–ecology–life” (PLE) classification system, this study established a dual-dimensional evaluation for carbon metabolism and ESV in horizontal and vertical dimensions. The horizontal flow of carbon and ESV was traced across different ecosystems, while the spatial and temporal dynamics of carbon metabolism and ESV were analyzed vertically. Spatial autocorrelation analyses were employed to examine the interaction patterns between carbon metabolism and ESV. The findings reveal that (1) cropland production space remains the dominant spatial type, exhibiting fluctuating patterns in the size of other spatial types, with a notable reduction in water ecological space. (2) From 2000 to 2020, high-value carbon metabolism density areas were primarily concentrated in the central region, while low-value areas gradually decreased in size. Cropland production space and urban living space served as key compartments and dominant pathways for carbon flow transfer in the two periods, respectively. (3) The total ecosystem service value (ESV) showed a downward trend, decreasing by CNY 1.432 billion from 2000 to 2020. The spatial distribution pattern indicates high values in the center and northwest, contrasting with lower values in the southeast. The flow of ecological value from forest ecological space to cropland production space represents the main loss pathway. (4) A significant negative correlation exists between carbon metabolism density and ESV, with areas of high correlation predominantly centered around cropland production space. This study provides a scientific foundation for addressing the challenges facing the black soil region, achieving synergistic resource use in pursuit of carbon neutrality, and constructing a more low-carbon and sustainable spatial pattern.

Suggested Citation

  • Yajie Shang & Yuanyuan Chen & Yalin Zhai & Lei Wang, 2025. "Spatiotemporal Relationship Between Carbon Metabolism and Ecosystem Service Value in the Rural Production–Living–Ecological Space of Northeast China’s Black Soil Region: A Case Study of Bin County," Land, MDPI, vol. 14(1), pages 1-31, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:199-:d:1570675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Shaoqing & Xu, Bing & Chen, Bin, 2018. "Unfolding the interplay between carbon flows and socioeconomic development in a city: What can network analysis offer?," Applied Energy, Elsevier, vol. 211(C), pages 403-412.
    2. Wenbo Cai, 2022. "Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region," Land, MDPI, vol. 11(9), pages 1-15, September.
    3. Huihui Yang & Shuiyu Yan & Na An & Qiang Yao, 2024. "Using Ecological Footprint Analysis to Evaluate Sustainable Development in Lushan County, China," Land, MDPI, vol. 13(7), pages 1-21, July.
    4. Baral, Himlal & Guariguata, Manuel R. & Keenan, Rodney J., 2016. "A proposed framework for assessing ecosystem goods and services from planted forests," Ecosystem Services, Elsevier, vol. 22(PB), pages 260-268.
    5. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    6. Ruijie Zhang & Kanhua Yu & Pingping Luo, 2024. "Spatio-Temporal Relationship between Land Use Carbon Emissions and Ecosystem Service Value in Guanzhong, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    7. Shulong Li & Zhizhang Wang, 2023. "The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China," Agriculture, MDPI, vol. 13(4), pages 1-21, March.
    8. Qing Liu & Dongdong Yang & Lei Cao, 2022. "Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    9. Xiaojian Wei & Li Zhao & Penggen Cheng & Mingrui Xie & Huimin Wang, 2022. "Spatial-Temporal Dynamic Evaluation of Ecosystem Service Value and Its Driving Mechanisms in China," Land, MDPI, vol. 11(7), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    2. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    3. Hongping Lian & Yuedong Zhang & Xuezhen Xiong & Wenjing Han, 2025. "Functional Assessment of Rural Counties Under the Production–Living–Ecological Framework: Evidence from Guangdong, China," Land, MDPI, vol. 14(5), pages 1-21, May.
    4. Lina Liang & Hongjia Wang & Heju Huai & Xiumei Tang, 2024. "Study of the Decoupling Patterns between Agricultural Development and Agricultural Carbon Emissions in Beijing Tianjin Hebei Region from 2000 to 2020," Land, MDPI, vol. 13(6), pages 1-15, June.
    5. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    6. Tianshu Shao & Xiangdong Xu & Yuelong Su, 2025. "Evaluation and Prediction of Agricultural Water Use Efficiency in the Jianghan Plain Based on the Tent-SSA-BPNN Model," Agriculture, MDPI, vol. 15(2), pages 1-32, January.
    7. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    8. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    9. Ruiz-Frau, A. & Krause, T. & Marbà, N., 2018. "The use of sociocultural valuation in sustainable environmental management," Ecosystem Services, Elsevier, vol. 29(PA), pages 158-167.
    10. Kailun Fang & Suzana Ariff Azizan & Yifei Wu, 2023. "Low-Carbon Community Regeneration in China: A Case Study in Dadong," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    11. Ke Liu & Xinyue Xie & Mingxue Zhao & Qian Zhou, 2022. "Carbon Emissions in the Yellow River Basin: Analysis of Spatiotemporal Evolution Characteristics and Influencing Factors Based on a Logarithmic Mean Divisia Index (LMDI) Decomposition Method," Sustainability, MDPI, vol. 14(15), pages 1-18, August.
    12. Xue, Ruoyu & Wang, Shanshan & Long, Wenqi & Gao, Gengyu & Liu, Donghui & Zhang, Ruiqin, 2021. "Uncovering GHG emission characteristics of industrial parks in Central China via emission inventory and cluster analysis," Energy Policy, Elsevier, vol. 151(C).
    13. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2023. "Greenhouse Gas Balance in the City of Reggio Calabria and Assessment of the Effects of Measures of Emission Reduction and Absorption," Energies, MDPI, vol. 16(9), pages 1-24, April.
    14. Lin, Jianyi & Liu, Yuan & Meng, Fanxin & Cui, Shenghui & Xu, Lilai, 2013. "Using hybrid method to evaluate carbon footprint of Xiamen City, China," Energy Policy, Elsevier, vol. 58(C), pages 220-227.
    15. Iversen, Sara V. & MacDonald, Michael A. & van der Velden, Naomi & van Soesbergen, Arnout & Convery, Ian & Mansfield, Lois & Holt, Claire D.S., 2024. "Using the Ecosystem Services assessment tool TESSA to balance the multiple landscape demands of increasing woodlands in a UK national park," Ecosystem Services, Elsevier, vol. 68(C).
    16. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    17. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    18. Lipeng Huang & Xiangyan Geng & Jianxu Liu, 2023. "Study on the Spatial Differences, Dynamic Evolution and Convergence of Global Carbon Dioxide Emissions," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    19. Harris, Paul G. & Chow, Alice S.Y. & Symons, Jonathan, 2012. "Greenhouse gas emissions from cities and regions: International implications revealed by Hong Kong," Energy Policy, Elsevier, vol. 44(C), pages 416-424.
    20. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:199-:d:1570675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.