IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i10p2033-d1769386.html
   My bibliography  Save this article

Divergent Urban Canopy Heat Island Responses to Heatwave Type over the Tibetan Plateau: A Case Study of Xining

Author

Listed:
  • Guoxin Chen

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
    Key Laboratory of Water Ecology Remediation and Protection at Headwater Regions of Big Rivers, Ministry of Water Resources, Xining 810016, China
    These authors contributed equally to this work.)

  • Xiaofan Lu

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
    Key Laboratory of Water Ecology Remediation and Protection at Headwater Regions of Big Rivers, Ministry of Water Resources, Xining 810016, China
    These authors contributed equally to this work.)

  • Qiong Li

    (School of Geological Engineering, Qinghai University, Xining 810016, China)

  • Siqi Zhang

    (Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China)

  • Suonam Kealdrup Tysa

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
    Key Laboratory of Water Ecology Remediation and Protection at Headwater Regions of Big Rivers, Ministry of Water Resources, Xining 810016, China)

Abstract

The escalating heatwave risks over the Tibetan Plateau (TP) highlight unresolved gaps in understanding multitype mechanisms and diurnal urban canopy heat island (UCHI) responses. Using Xining’s high-density observational network (2018–2023) and by employing comparative analysis (urban–rural, heatwave versus non-heatwave days) and composite analysis, we found: During the record-breaking July 2022 heatwave across the TP, Xining reached an extreme UCHI peak (z-score: 3.0). Critically asymmetric UCHI responses as daytime heatwaves amplify mean intensity by 0.35 °C via extreme value shifts, whereas nighttime events suppress it by 0.31 °C. Crucially, heatwaves induce negligible daytime UCHI modulation but drive comparable magnitude nighttime UCHI intensification (during daytime events) and reduction (during nighttime events), demonstrating type-dependent and diurnally asymmetric urban thermal sensitivities. Heatwaves driven by distinct synoptic patterns; daytime events are controlled by an anomaly anticyclone (cloudless, dry conditions), while nighttime events occur under plateau-north anticyclones (cloudy, humid conditions). These patterns fundamentally reshape heatwave–UCHI interactions through divergent mechanisms: Daytime/nighttime heatwaves amplify/suppress nocturnal UCHI through enhanced/reduced urban heat storage and accelerated/inhibited rural radiative cooling. Our case study demonstrates that although heatwaves generally amplify nocturnal UCHI, in dry regions, their synoptic drivers significantly modify this nighttime synergy. The nocturnal UCHI during heatwave is not only driven by humidity effects but also modulated by cloud cover-regulated rural radiative cooling and urban thermal storage. These findings establish a mechanistic framework for heatwaves–UCHI interactions and provide actionable insights for heat-resilient planning in high-altitude arid cities.

Suggested Citation

  • Guoxin Chen & Xiaofan Lu & Qiong Li & Siqi Zhang & Suonam Kealdrup Tysa, 2025. "Divergent Urban Canopy Heat Island Responses to Heatwave Type over the Tibetan Plateau: A Case Study of Xining," Land, MDPI, vol. 14(10), pages 1-15, October.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:10:p:2033-:d:1769386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/10/2033/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/10/2033/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Sun & Xuebin Zhang & Guoyu Ren & Francis W. Zwiers & Ting Hu, 2016. "Contribution of urbanization to warming in China," Nature Climate Change, Nature, vol. 6(7), pages 706-709, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    3. Min Wang & Yuqing Su & Jieqiong Wang, 2025. "How to Improve Blue–Green–Gray Infrastructure to Optimize River Cooling Island Effect on Riparian Zone for Outdoor Activities in Summer," Land, MDPI, vol. 14(7), pages 1-34, June.
    4. Zeng, Lijun & Zhao, Yue & Wang, Xilian, 2022. "How to develop the new urbanization in mineral resources abundant regions in China? A VIKOR-based path matching model," Resources Policy, Elsevier, vol. 79(C).
    5. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    7. Alberto Vesperoni & Paul Schweinzer, 2023. "A threshold model of urban development," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 891-924, September.
    8. Xue Luo & Weixin Luan & Qiaoqiao Lin & Zun Liu & Zhipeng Shi & Gai Cao, 2025. "Nonlinear Relationships Between Economic Development Stages and Land Use Efficiency in China’s Cities," Land, MDPI, vol. 14(9), pages 1-21, August.
    9. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    10. Feiyu Wang & Keqin Duan & Lei Zou, 2019. "Urbanization Effects on Human-Perceived Temperature Changes in the North China Plain," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
    11. Yawei Yang & Lei Li & Pak-Wai Chan & Qianjin Zhou & Bosi Sheng, 2022. "Intercomparison of Local Warming Trends of Shanghai and Hong Kong Based on 120-Year Temperature Observational Data," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    12. Chu Li & Jinming Yan & Ze Xu, 2021. "How Does New-Type Urbanization Affect the Subjective Well-Being of Urban and Rural Residents? Evidence from 28 Provinces of China," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    13. Na Zhao & Mingxing Chen, 2021. "A Comprehensive Study of Spatiotemporal Variations in Temperature Extremes across China during 1960–2018," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    14. Wen Xu & Lushuang Zhao & Yunwei Zhang & Zhaolin Gu, 2023. "Investigation on Air Ventilation within Idealised Urban Wind Corridors and the Influence of Structural Factors with Numerical Simulations," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    15. Chen Yang & Qingming Zhan & Sihang Gao & Huimin Liu, 2019. "How Do the Multi-Temporal Centroid Trajectories of Urban Heat Island Correspond to Impervious Surface Changes: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 16(20), pages 1-21, October.
    16. Chenchen Ren & Guoyu Ren & Panfeng Zhang & Suonam Kealdrup Tysa & Yun Qin, 2021. "Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland," Land, MDPI, vol. 10(4), pages 1-11, April.
    17. Sylvain Zeghni & Nathalie Fabry, 2023. "Nachhaltige Information und die Dekarbonisierungsstrategie der europäischen Städte [Sustainable information and decarbonization strategy for European cities]," Post-Print hal-04284996, HAL.
    18. Xiaoyong Li & Wenhui Kuang & Fengyun Sun, 2020. "Identifying Urban Flood Regulation Priority Areas in Beijing Based on an Ecosystem Services Approach," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    19. Yijia Huang & Jiaqi Zhang & Jinqun Wu, 2020. "Integrating Sustainability Assessment into Decoupling Analysis: A Focus on the Yangtze River Delta Urban Agglomerations," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    20. Fan Wang & Meng Gao & Cheng Liu & Ran Zhao & Michael B. McElroy, 2024. "Uniformly elevated future heat stress in China driven by spatially heterogeneous water vapor changes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:10:p:2033-:d:1769386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.